scholarly journals Haltere–mediated equilibrium reflexes of the fruit fly, Drosophila melanogaster

1999 ◽  
Vol 354 (1385) ◽  
pp. 903-916 ◽  
Author(s):  
Michael H. Dickinson

Flies display a sophisticated suite of aerial behaviours that require rapid sensory–motor processing. Like all insects, flight control in flies is mediated in part by motion–sensitive visual interneurons that project to steering motor circuitry within the thorax. Flies, however, possess a unique flight control equilibrium sense that is encoded by mechanoreceptors at the base of the halteres, small dumb–bell–shaped organs derived through evolutionary transformation of the hind wings. To study the input of the haltere system onto the flight control system, I constructed a mechanically oscillating flight arena consisting of a cylindrical array of light–emitting diodes that generated the moving image of a 30° vertical stripe. The arena provided closed–loop visual feedback to elicit fixation behaviour, an orientation response in which flies maintain the position of the stripe in the front portion of their visual field by actively adjusting their wing kinematics. While flies orientate towards the stripe, the entire arena was swung back and forth while an optoelectronic device recorded the compensatory changes in wing stroke amplitude and frequency. In order to reduce the background changes in stroke kinematics resulting from the animal's closed–loop visual fixation behaviour, the responses to eight identical mechanical rotations were averaged in each trial. The results indicate that flies possess a robust equilibrium reflex in which angular rotations of the body elicit compensatory changes in both the amplitude and stroke frequency of the wings. The results of uni– and bilateral ablation experiments demonstrate that the halteres are required for these stability reflexes. The results also confirm that halteres encode angular velocity of the body by detecting the Coriolis forces that result from the linear motion of the haltere within the rotating frame of reference of the fly's thorax. By rotating the flight arena at different orientations, it was possible to construct a complete directional tuning map of the haltere–mediated reflexes. The directional tuning of the reflex is quite linear such that the kinematic responses vary as simple trigonometric functions of stimulus orientation. The reflexes function primarily to stabilize pitch and yaw within the horizontal plane.

2002 ◽  
Vol 205 (16) ◽  
pp. 2413-2427 ◽  
Author(s):  
Mao Sun ◽  
Jian Tang

SUMMARYThe lift and power requirements for hovering flight in Drosophila virilis were studied using the method of computational fluid dynamics. The Navier-Stokes equations were solved numerically. The solution provided the flow velocity and pressure fields, from which the unsteady aerodynamic forces and moments were obtained. The inertial torques due to the acceleration of the wing mass were computed analytically. On the basis of the aerodynamic forces and moments and the inertial torques, the lift and power requirements for hovering flight were obtained.For the fruit fly Drosophila virilis in hovering flight (with symmetrical rotation), a midstroke angle of attack of approximately 37°was needed for the mean lift to balance the insect weight, which agreed with observations. The mean drag on the wings over an up- or downstroke was approximately 1.27 times the mean lift or insect weight (i.e. the wings of this tiny insect must overcome a drag that is approximately 27 % larger than its weight to produce a lift equal to its weight). The body-mass-specific power was 28.7 W kg-1, the muscle-mass-specific power was 95.7 W kg-1 and the muscle efficiency was 17 %.With advanced rotation, larger lift was produced than with symmetrical rotation, but it was more energy-demanding, i.e. the power required per unit lift was much larger. With delayed rotation, much less lift was produced than with symmetrical rotation at almost the same power expenditure; again, the power required per unit lift was much larger. On the basis of the calculated results for power expenditure, symmetrical rotation should be used for balanced, long-duration flight and advanced rotation and delayed rotation should be used for flight control and manoeuvring. This agrees with observations.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Meng-Cheng Yen ◽  
Chia-Jung Lee ◽  
Kang-Hsiang Liu ◽  
Yi Peng ◽  
Junfu Leng ◽  
...  

AbstractField-induced ionic motions in all-inorganic CsPbBr3 perovskite quantum dots (QDs) strongly dictate not only their electro-optical characteristics but also the ultimate optoelectronic device performance. Here, we show that the functionality of a single Ag/CsPbBr3/ITO device can be actively switched on a sub-millisecond scale from a resistive random-access memory (RRAM) to a light-emitting electrochemical cell (LEC), or vice versa, by simply modulating its bias polarity. We then realize for the first time a fast, all-perovskite light-emitting memory (LEM) operating at 5 kHz by pairing such two identical devices in series, in which one functions as an RRAM to electrically read the encoded data while the other simultaneously as an LEC for a parallel, non-contact optical reading. We further show that the digital status of the LEM can be perceived in real time from its emission color. Our work opens up a completely new horizon for more advanced all-inorganic perovskite optoelectronic technologies.


2019 ◽  
Vol 122 (5) ◽  
pp. 2173-2186 ◽  
Author(s):  
Joscha Schmitz ◽  
Matthias Gruhn ◽  
Ansgar Büschges

Feedback from load and movement sensors can modify timing and magnitude of the motor output in the stepping stick insect. One source of feedback is stretch reception by the femoral chordotonal organ (fCO), which encodes such parameters as the femorotibial (FTi) joint angle, the angular velocity, and its acceleration. Stimulation of the fCO causes a postural resistance reflex, during quiescence, and can elicit the opposite, so-called active reaction (AR), which assists ongoing flexion during active movements. In the present study, we investigated the role of fCO feedback for the difference in likelihood of generating ARs on the inside vs. the outside during curve stepping. We analyzed the effects of fCO stimulation on the motor output to the FTi and the neighboring coxa-trochanter and thorax-coxa joints of the middle leg. In inside and outside turns, the probability for ARs increases with increasing starting angle and decreasing stimulus velocity; furthermore, it is independent of the total angular excursion. However, the transition between stance and swing motor activity always occurs after a specific angular excursion, independent of the turning direction. Feedback from the fCO also has an excitatory influence on levator trochanteris motoneurons (MNs) during inside and outside turns, whereas the same feedback affects protractor coxae MNs only during outside steps. Our results suggest joint- and body side-dependent processing of fCO feedback. A shift in gain may be responsible for different AR probabilities between inside and outside turning, whereas the general control mechanism for ARs is unchanged. NEW & NOTEWORTHY We show that parameters of movement feedback from the tibia in an insect during curve walking are processed in a body side-specific manner, and how. From our results it is highly conceivable that the difference in motor response to the feedback supports the body side-specific leg kinematics during turning. Future studies will need to determine the source for the inputs that determine the local changes in sensory-motor processing.


2017 ◽  
Vol 40 (11) ◽  
pp. 2971-2975
Author(s):  
Utsav Saxena ◽  
Imraan A. Faruque

2014 ◽  
Vol 7 (12) ◽  
pp. 4035-4043 ◽  
Author(s):  
Chang Kyu Jeong ◽  
Kwi-Il Park ◽  
Jung Hwan Son ◽  
Geon-Tae Hwang ◽  
Seung Hyun Lee ◽  
...  

We present a self-powered all-flexible light-emitting optoelectronic device using a flexible and high-performance piezoelectric energy harvester with a robustly developed flexible and vertically structured inorganic LED array.


2010 ◽  
Vol 8 (55) ◽  
pp. 171-185 ◽  
Author(s):  
Nicola Rohrseitz ◽  
Steven N. Fry

Behavioural control in many animals involves complex mechanisms with intricate sensory-motor feedback loops. Modelling allows functional aspects to be captured without relying on a description of the underlying complex, and often unknown, mechanisms. A wide range of engineering techniques are available for modelling, but their ability to describe time-continuous processes is rarely exploited to describe sensory-motor control mechanisms in biological systems. We performed a system identification of visual flight speed control in the fruitfly Drosophila , based on an extensive dataset of open-loop responses previously measured under free flight conditions. We identified a second-order under-damped control model with just six free parameters that well describes both the transient and steady-state characteristics of the open-loop data. We then used the identified control model to predict flight speed responses after a visual perturbation under closed-loop conditions and validated the model with behavioural measurements performed in free-flying flies under the same closed-loop conditions. Our system identification of the fruitfly's flight speed response uncovers the high-level control strategy of a fundamental flight control reflex without depending on assumptions about the underlying physiological mechanisms. The results are relevant for future investigations of the underlying neuromotor processing mechanisms, as well as for the design of biomimetic robots, such as micro-air vehicles.


1994 ◽  
Vol 116 (3) ◽  
pp. 429-436 ◽  
Author(s):  
A. W. Lee ◽  
J. K. Hedrick

This paper examines the performance enhancement of a statically unstable aircraft subject to the input and state constraints. Under control saturation, i/o linearizability is destroyed and the state trajectories may not be attracted to the sliding surface. If the reference signals are sufficiently large and the zero-dynamics is lightly damped, the i/o linearizing control may become unreasonably large in magnitude, making the closed-loop system susceptible to the damaging effects of control saturation. In addition to performance degradations such as increased tracking errors, control saturation can drive the closed-loop system to instability. In this paper, a new design method called approximate i/o linearization is presented to enhance the performance of the SISO longitudinal flight control problem under saturation. The new approximate i/o linearization law is obtained by solving a pointwise minimization problem. The function to be minimized consists of a surface whose relative degree is one, its derivative, and weighted square of the input u. The advantages of the approximate i/o linearization is that the adverse effects of control saturation can be minimized by properly selecting the weight on the usage of the control. The only requirement for the new technique is that the original plant be locally i/o linearizable. Thus approximate i/o linearization does not impose additional strict requirements on the plant. In the remaining sections of the paper, stability and bounded tracking properties of the approximate i/o linearization are proven. Finally, a longitudinal flight control problem is used to demonstrate the application of approximate i/o linearization.


Author(s):  
M Hockenhull

The application of electrical flight control systems to civil transport aircraft has directed attention to the need for improved airworthiness regulation. In this paper, the scope and interpretation of a new FAR/JAR Part 25 regulation in preparation is discussed, applicable to aircraft that have closed-loop control systems for flight control, load alleviation or stability augmentation, and have the potential to interact with the aircraft's structural dynamics.


Sign in / Sign up

Export Citation Format

Share Document