scholarly journals Aspects of climate change prediction relevant to crop productivity

2005 ◽  
Vol 360 (1463) ◽  
pp. 1999-2009 ◽  
Author(s):  
Chris Huntingford ◽  
F Hugo Lambert ◽  
John H.C Gash ◽  
Christopher M Taylor ◽  
Andrew J Challinor

Projected changes in surface climate are reviewed at a range of temporal scales, with an emphasis on tropical northern Africa—a region considered to be particularly vulnerable to climate change. Noting the key aspects of ‘weather’ affecting crop yield, we then consider relevant and projected change using output from a range of state of the art global climate models (GCMs), and for different future emission scenarios. The outputs from the models reveal significant inter-model variation in the change expected by the end of the twenty-first century for even the lowest IPCC emission scenario. We provide a set of recommendations on future model diagnostics, configurations and ease of use to close further the gap between GCMs and smaller-scale crop models. This has the potential to empower countries to make their own assessments of vulnerability to climate change induced periods of food scarcity.

2014 ◽  
Vol 5 (1) ◽  
pp. 617-647
Author(s):  
Y. Yin ◽  
Q. Tang ◽  
X. Liu

Abstract. Climate change may affect crop development and yield, and consequently cast a shadow of doubt over China's food self-sufficiency efforts. In this study we used the model projections of a couple of global gridded crop models (GGCMs) to assess the effects of future climate change on the potential yields of the major crops (i.e. wheat, rice, maize and soybean) over China. The GGCMs were forced with the bias-corrected climate data from 5 global climate models (GCMs) under the Representative Concentration Pathways (RCP) 8.5 which were made available by the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP). The results show that the potential yields of rice may increase over a large portion of China. Climate change may benefit food productions over the high-altitude and cold regions where are outside current main agricultural area. However, the potential yield of maize, soybean and wheat may decrease in a large portion of the current main crop planting areas such as North China Plain. Development of new agronomic management strategy may be useful for coping with climate change in the areas with high risk of yield reduction.


2010 ◽  
Vol 2 (2) ◽  
pp. 148-167 ◽  
Author(s):  
Kirsti Jylhä ◽  
Heikki Tuomenvirta ◽  
Kimmo Ruosteenoja ◽  
Hanna Niemi-Hugaerts ◽  
Krista Keisu ◽  
...  

Abstract A Web site questionnaire survey in Finland suggested that maps illustrating projected shifts of Köppen climatic zones are an effective visualization tool for disseminating climate change information. The climate classification is based on seasonal cycles of monthly-mean temperature and precipitation, and it divides Europe and its adjacent land areas into tundra, boreal, temperate, and dry climate types. Projections of future changes in the climatic zones were composed using multimodel mean projections based on simulations performed with 19 global climate models. The projections imply that, depending on the greenhouse gas scenarios, about half or possibly even two-thirds of the study domain will be affected by shifts toward a warmer or drier climate type during this century. The projected changes within the next few decades are chiefly located near regions where shifts in the borders of the zones have already occurred during the period 1950–2006. The questionnaire survey indicated that the information regarding the shifting climatic zones as disseminated by the maps was generally interpreted correctly, with the average percentage of correct answers being 86%. Additional examples of the use of the climatic zones to communicate climate change information to the public are included.


Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2300 ◽  
Author(s):  
Xin Li ◽  
Ke Zhang ◽  
Vladan Babovic

Estimates of the projected changes in precipitation and temperature have great significance for adaption planning in the context of climate change. To obtain the climate change information at regional or local scale, downscaling approaches are required to downscale the coarse global climate model (GCM) outputs to finer resolutions in both spatial and temporal dimensions. The multi-site, multi-variate downscaling approach has received considerable attention recently due to its advantage in providing distributed, physically coherent downscaled meteorological fields for subsequent impact modeling. In this study, a newly developed multi-site multivariate statistical downscaling approach based on empirical copula was applied to downscale grid-based, monthly precipitation, maximum and minimum temperature outputs from nine global climate models to site-specific, daily data over four weather stations in Singapore. The advantage of this approach lies in its ability to reflect the at-site statistics, inter-site and inter-variable dependencies, and temporal structure in the downscaled data. The downscaling was conducted for two projection periods (i.e., the 2021–2050 and 2071–2100 periods) under two emission scenarios (i.e., representative concentration pathway (RCP)4.5 and RCP8.5 scenarios). Based on the downscaling results, projected changes in daily precipitation, maximum and minimum temperatures were examined. The results show that there is no consensus on the projected change in average precipitation over the two future periods. The major uncertainty for precipitation projection comes from the GCMs. For daily maximum and minimum temperatures, all downscaled GCMs project an increase of average temperature in the future. These change signals could be different from those of the original GCM data, both in magnitude and in direction. These findings could assist in adaption planning in Singapore in response to emerging climate risks.


2022 ◽  
Author(s):  
Louise Busschaert ◽  
Shannon de Roos ◽  
Wim Thiery ◽  
Dirk Raes ◽  
Gabriëlle J. M. De Lannoy

Abstract. Global soil water availability is challenged by the effects of climate change and a growing population. On average 70 % of freshwater extraction is attributed to agriculture, and the demand is increasing. In this study, the effects of climate change on the evolution of the irrigation water requirement to sustain current crop productivity are assessed by using the FAO crop growth model AquaCrop version 6.1. The model is run at 0.5° lat × 0.5° lon resolution over the European mainland, assuming a general C3-type of crop, and forced by climate input data from the Inter-Sectoral Impact Model Intercomparison Project phase three (ISIMIP3). First, the performance of AquaCrop surface soil moisture (SSM) simulations using historical meteorological input from two ISIMIP3 forcing datasets is evaluated with satellite-based SSM estimates. When driven by ISIMIP3a reanalysis meteorology for the years 2011–2016, daily simulated SSM values have an unbiased root-mean-square difference of 0.08 and 0.06 m3m−3 with SSM retrievals from the Soil Moisture Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) missions, respectively. When forced with ISIMIP3b meteorology from five Global Climate Models (GCM) for the years 2011–2020, the historical simulated SSM climatology closely agrees with the climatology of the reanalysis-driven AquaCrop SSM climatology as well as the satellite-based SSM climatologies. Second, the evaluated AquaCrop model is run to quantify the future irrigation requirement, for an ensemble of five GCMs and three different emission scenarios. The simulated net irrigation requirement (Inet) of the three summer months for a near and far future climate period (2031–2060 and 2071–2100) is compared to the baseline period of 1985–2014, to assess changes in the mean and interannual variability of the irrigation demand. Averaged over the continent and the model ensemble, the far future Inet is expected to increase by 67 mm year–1 (+30 %) under a high emission scenario Shared Socioeconomic Pathway (SSP) 3-7.0. Central and southern Europe are the most impacted with larger Inet increases. The interannual variability of Inet is likely to increase in northern and central Europe, whereas the variability is expected to decrease in southern regions. Under a high mitigation scenario (SSP1-2.6), the increase in Inet will stabilize around 40 mm year–1 towards the end of the century and interannual variability will still increase but to a smaller extent. The results emphasize a large uncertainty in the Inet projected by various GCMs.


2015 ◽  
Vol 6 (1) ◽  
pp. 45-59 ◽  
Author(s):  
Y. Yin ◽  
Q. Tang ◽  
X. Liu

Abstract. Climate change may affect crop growth and yield, which consequently casts a shadow of doubt over China's food self-sufficiency efforts. In this study, we used the projections derived from four global gridded crop models (GGCropMs) to assess the effects of future climate change on the yields of the major crops (i.e., maize, rice, soybean and wheat) in China. The GGCropMs were forced with the bias-corrected climate data from five global climate models (GCMs) under Representative Concentration Pathway (RCP) 8.5, which were made available through the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP). The results show that the potential yields of the crops would decrease in the 21st century without carbon dioxide (CO2) fertilization effect. With the CO2 effect, the potential yields of rice and soybean would increase, while the potential yields of maize and wheat would decrease. The uncertainty in yields resulting from the GGCropMs is larger than the uncertainty derived from GCMs in the greater part of China. Climate change may benefit rice and soybean yields in high-altitude and cold regions which are not in the current main agricultural area. However, the potential yields of maize, soybean and wheat may decrease in the major food production area. Development of new agronomic management strategies may be useful for coping with climate change in the areas with a high risk of yield reduction.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lennart Quante ◽  
Sven N. Willner ◽  
Robin Middelanis ◽  
Anders Levermann

AbstractDue to climate change the frequency and character of precipitation are changing as the hydrological cycle intensifies. With regards to snowfall, global warming has two opposing influences; increasing humidity enables intense snowfall, whereas higher temperatures decrease the likelihood of snowfall. Here we show an intensification of extreme snowfall across large areas of the Northern Hemisphere under future warming. This is robust across an ensemble of global climate models when they are bias-corrected with observational data. While mean daily snowfall decreases, both the 99th and the 99.9th percentiles of daily snowfall increase in many regions in the next decades, especially for Northern America and Asia. Additionally, the average intensity of snowfall events exceeding these percentiles as experienced historically increases in many regions. This is likely to pose a challenge to municipalities in mid to high latitudes. Overall, extreme snowfall events are likely to become an increasingly important impact of climate change in the next decades, even if they will become rarer, but not necessarily less intense, in the second half of the century.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1819
Author(s):  
Eleni S. Bekri ◽  
Polychronis Economou ◽  
Panayotis C. Yannopoulos ◽  
Alexander C. Demetracopoulos

Freshwater resources are limited and seasonally and spatially unevenly distributed. Thus, in water resources management plans, storage reservoirs play a vital role in safeguarding drinking, irrigation, hydropower and livestock water supply. In the last decades, the dams’ negative effects, such as fragmentation of water flow and sediment transport, are considered in decision-making, for achieving an optimal balance between human needs and healthy riverine and coastal ecosystems. Currently, operation of existing reservoirs is challenged by increasing water demand, climate change effects and active storage reduction due to sediment deposition, jeopardizing their supply capacity. This paper proposes a methodological framework to reassess supply capacity and management resilience for an existing reservoir under these challenges. Future projections are derived by plausible climate scenarios and global climate models and by stochastic simulation of historic data. An alternative basic reservoir management scenario with a very low exceedance probability is derived. Excess water volumes are investigated under a probabilistic prism for enabling multiple-purpose water demands. Finally, this method is showcased to the Ladhon Reservoir (Greece). The probable total benefit from water allocated to the various water uses is estimated to assist decision makers in examining the tradeoffs between the probable additional benefit and risk of exceedance.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jun Yang ◽  
Maigeng Zhou ◽  
Zhoupeng Ren ◽  
Mengmeng Li ◽  
Boguang Wang ◽  
...  

AbstractRecent studies have reported a variety of health consequences of climate change. However, the vulnerability of individuals and cities to climate change remains to be evaluated. We project the excess cause-, age-, region-, and education-specific mortality attributable to future high temperatures in 161 Chinese districts/counties using 28 global climate models (GCMs) under two representative concentration pathways (RCPs). To assess the influence of population ageing on the projection of future heat-related mortality, we further project the age-specific effect estimates under five shared socioeconomic pathways (SSPs). Heat-related excess mortality is projected to increase from 1.9% (95% eCI: 0.2–3.3%) in the 2010s to 2.4% (0.4–4.1%) in the 2030 s and 5.5% (0.5–9.9%) in the 2090 s under RCP8.5, with corresponding relative changes of 0.5% (0.0–1.2%) and 3.6% (−0.5–7.5%). The projected slopes are steeper in southern, eastern, central and northern China. People with cardiorespiratory diseases, females, the elderly and those with low educational attainment could be more affected. Population ageing amplifies future heat-related excess deaths 2.3- to 5.8-fold under different SSPs, particularly for the northeast region. Our findings can help guide public health responses to ameliorate the risk of climate change.


2019 ◽  
Vol 32 (19) ◽  
pp. 6467-6490 ◽  
Author(s):  
Kimmo Ruosteenoja ◽  
Timo Vihma ◽  
Ari Venäläinen

Abstract Future changes in geostrophic winds over Europe and the North Atlantic region were studied utilizing output data from 21 CMIP5 global climate models (GCMs). Changes in temporal means, extremes, and the joint distribution of speed and direction were considered. In concordance with previous research, the time mean and extreme scalar wind speeds do not change pronouncedly in response to the projected climate change; some degree of weakening occurs in the majority of the domain. Nevertheless, substantial changes in high wind speeds are identified when studying the geostrophic winds from different directions separately. In particular, in northern Europe in autumn and in parts of northwestern Europe in winter, the frequency of strong westerly winds is projected to increase by up to 50%. Concurrently, easterly winds become less common. In addition, we evaluated the potential of the GCMs to simulate changes in the near-surface true wind speeds. In ocean areas, changes in the true and geostrophic winds are mainly consistent and the emerging differences can be explained (e.g., by the retreat of Arctic sea ice). Conversely, in several GCMs the continental wind speed response proved to be predominantly determined by fairly arbitrary changes in the surface properties rather than by changes in the atmospheric circulation. Accordingly, true wind projections derived directly from the model output should be treated with caution since they do not necessarily reflect the actual atmospheric response to global warming.


Sign in / Sign up

Export Citation Format

Share Document