scholarly journals Two-dimensional imaging detectors for structural biology with X-ray lasers

2014 ◽  
Vol 369 (1647) ◽  
pp. 20130334 ◽  
Author(s):  
Peter Denes

Our ability to harness the advances in microelectronics over the past decade(s) for X-ray detection has resulted in significant improvements in the state of the art. Biology with X-ray free-electron lasers present daunting detector challenges: all of the photons arrive at the same time, and individual high peak power pulses must be read out shot-by-shot. Direct X-ray detection in silicon pixel detectors—monolithic or hybrid—are the standard for XFELs today. For structural biology, improvements are needed for today's 10–100 Hz XFELs, and further improvements are required for tomorrow's 10+ kHz XFELs. This article will discuss detector challenges, why they arise and ways to overcome them, along with the current state of the art.

2014 ◽  
Vol 21 (5) ◽  
pp. 1006-1010 ◽  
Author(s):  
Peter Denes ◽  
Bernd Schmitt

Dramatic advances in synchrotron radiation sources produce ever-brighter beams of X-rays, but those advances can only be used if there is a corresponding improvement in X-ray detectors. With the advent of storage ring sources capable of being diffraction-limited (down to a certain wavelength), advances in detector speed, dynamic range and functionality is required. While many of these improvements in detector capabilities are being pursued now, the orders-of-magnitude increases in brightness of diffraction-limited storage ring sources will require challenging non-incremental advances in detectors. This article summarizes the current state of the art, developments underway worldwide, and challenges that diffraction-limited storage ring sources present for detectors.


2002 ◽  
Vol 10 (1) ◽  
pp. 43-45 ◽  
Author(s):  
J. J. Rehr ◽  
A. L. Ankudinov

There has been dramatic progress over the past decade both in theory and inab initiocalculations of X-ray absorption fine structure. Significant progress has also been made in understanding X-ray absorption near-edge structure (XANES). This contribution briefly reviews the developments in this field leading up to the current state. One of the key advances has been the development of severalab initiocodes such asFEFF, which permit an interpretation of the spectra in terms of geometrical and electronic properties of a material. Despite this progress, XANES calculations have remained challenging both to compute and to interpret. However, recent advances based on parallel Lanczos multiple-scattering algorithms have led to speed increases of typically two orders of magnitude, making fast calculations practicable. Improvements in the interpretation of near-edge structure have also been made. It is suggested that these developments can be advantageous in structural biology,e.g.in post-genomics studies of metalloproteins.


Photoniques ◽  
2021 ◽  
pp. 22-26
Author(s):  
Marie-Emmanuelle Couprie

Free Electron Lasers (FEL) use free electrons in the periodic permanent magnetic field of an undulator as a gain medium. They extend from far infrared to X-rays, they are easily tunable and provide a high peak power. The advent of tunable intense (few mJ) short pulse (down to the attosecond regime) FELs with record multi GW peak power in the X-ray domain enables to explore new scientific areas. These unprecedent X-ray sources come along with versatile performance.


2016 ◽  
Vol 371 (1688) ◽  
pp. 20150106 ◽  
Author(s):  
Margaret M. McCarthy

Studies of sex differences in the brain range from reductionistic cell and molecular analyses in animal models to functional imaging in awake human subjects, with many other levels in between. Interpretations and conclusions about the importance of particular differences often vary with differing levels of analyses and can lead to discord and dissent. In the past two decades, the range of neurobiological, psychological and psychiatric endpoints found to differ between males and females has expanded beyond reproduction into every aspect of the healthy and diseased brain, and thereby demands our attention. A greater understanding of all aspects of neural functioning will only be achieved by incorporating sex as a biological variable. The goal of this review is to highlight the current state of the art of the discipline of sex differences research with an emphasis on the brain and to contextualize the articles appearing in the accompanying special issue.


2021 ◽  
Vol 2 ◽  
Author(s):  
Kai-Cheng Yan ◽  
Axel Steinbrueck ◽  
Adam C. Sedgwick ◽  
Tony D. James

Over the past 30 years fluorescent chemosensors have evolved to incorporate many optical-based modalities and strategies. In this perspective we seek to highlight the current state of the art as well as provide our viewpoint on the most significant future challenges remaining in the area. To underscore current trends in the field and to facilitate understanding of the area, we provide the reader with appropriate contemporary examples. We then conclude with our thoughts on the most probable directions that chemosensor development will take in the not-too-distant future.


1990 ◽  
Vol 18 (7) ◽  
pp. 515-528
Author(s):  
Yoshiaki KATO ◽  
Tadashi KANABE ◽  
Yoshiro OWADANO ◽  
Masayuki KAKEHATA ◽  
Fumihiko KANNARI ◽  
...  

Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 251 ◽  
Author(s):  
Christopher Kupitz ◽  
Raymond G. Sierra

Serial Femtosecond Crystallography (SFX) at X-ray Free electron Lasers (XFELs) is a relatively new field promising to deliver unparalleled spatial and temporal resolution on biological systems and there dynamics. Over the past decade, though, there have been a handful of results that have truly delivered on these promises. Why? SFX has many paradigm shifting techniques not seen in typical structural biology arenas, such as creating a concentrated slurry of microcrystals rather than a handful of loopable prisms worthy of a catalog photo. Then taking that slurry and high speed jetting them towards the vacuum or helium interation region to destroy less than 1% of your sample and waste the other 99. The literature is full of techniques and methods promising to cure what ails your experiment, yet as an instrument scientist will tell you –and a first author might admit after a few drinks at the conference happy hour—is that there are a lot more failures than the success we published, results may vary. We will walk through a best practices on how to prepare your sample and chose a sample delivery technique that will amerliorate your studies rather than undermine your hardwork and hopefully lead to better experimental planning and execution, inching you closer to that scientific goal and that call from Stockholm. This will be written in a more editorialized fashion and is meant to give the reader an idea of what to try or how they should be thinking. Welcome to SFX, now what?


2019 ◽  
Vol 217 (3) ◽  
pp. 521-523 ◽  
Author(s):  
Anthony S. David

Academic interest in the concept of insight in psychosis has increased markedly over the past 30 years, prompting this selective appraisal of the current state of the art. Considerable progress has been made in terms of measurement and confirming a number of clinical associations. More recently, the relationship between insight and involuntary treatment has been scrutinised more closely alongside the link between decision-making capacity and insight. Advances in the clinical and cognitive neurosciences have influenced conceptual development, particularly the field of ‘metacognition’. New therapies, including those that are psychologically and neurophysiologically based, are being tested as ways to enhance insight.


2011 ◽  
Vol 2011 ◽  
pp. 1-15 ◽  
Author(s):  
Raquel L. Lieberman

Mutations in both acid-β-glucosidase (GCase) and saposin C lead to Gaucher disease, the most common lysosomal storage disorder. The past several years have seen an explosion of structural and biochemical information for these proteins, which have provided new insight into the biology and pathogenesis of Gaucher disease, as well as opportunities for new therapeutic directions. Nearly 20 crystal structures of GCase are now available, from different heterologous sources, complexed with different ligands in the active site, in different glycosylation states, as well as one that harbors a prevalent disease-causing mutation, N370S. For saposin C, two NMR and 3 crystal structures have been solved, each with its unique snapshot. This review focuses on the details of these structures to highlight salient common and disparate features that contribute to our current state of knowledge of this complex orphan disease.


2002 ◽  
Vol 15 (4) ◽  
pp. 4-13 ◽  
Author(s):  
Ann E. Terry ◽  
Gavin B. M. Vaughan ◽  
Åke Kvick ◽  
Richard I. Walton ◽  
Alexander J. Norquist ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document