scholarly journals From homeostasis to pathology: decrypting microbe–host symbiotic signals in the intestinal crypt

2016 ◽  
Vol 371 (1707) ◽  
pp. 20150500 ◽  
Author(s):  
Thierry Pédron ◽  
Giulia Nigro ◽  
Philippe J. Sansonetti

Metagenomic analysis of the human intestinal microbiome has provided a wealth of information that allowed an exceptionally detailed description of its microbial content and physiological potential. It also set the basis for studies allowing correlation of alterations in the balance of this microbiota and the occurrence of a certain number of emerging diseases, such as inflammatory bowel diseases, obesity and diabetes, and possibly colorectal cancer. The time has come to give the intestinal microbiota in symbiosis with its host an experimental dimension. This brief review summarizes our attempt at developing a cellular microbiology of the mutualistic symbiosis established between the gut microbiota and the host intestinal surface. Particular attention is paid to the intestinal crypt, due to its role in epithelial regeneration. This article is part of the themed issue ‘The new bacteriology’.

2018 ◽  
Vol 19 (12) ◽  
pp. 3787 ◽  
Author(s):  
Teodora Costea ◽  
Ariana Hudiță ◽  
Oana-Alina Ciolac ◽  
Bianca Gălățeanu ◽  
Octav Ginghină ◽  
...  

Colorectal cancer is one of the leading causes of death, and the third most diagnosed type of cancer, worldwide. It is most common amongst men and women over 50 years old. Risk factors include smoking, alcohol, diet, physical inactivity, genetics, alterations in gut microbiota, and associated pathologies (diabetes, obesity, chronic inflammatory bowel diseases). This review will discuss, in detail, the chemopreventive properties of some dietary compounds (phenolic compounds, carotenoids, iridoids, nitrogen compounds, organosulfur compounds, phytosterols, essential oil compounds, polyunsaturated fatty acids and dietary fiber) against colorectal cancer. We present recent data, focusing on in vitro, laboratory animals and clinical trials with the previously mentioned compounds. The chemopreventive properties of the dietary compounds involve multiple molecular and biochemical mechanisms of action, such as inhibition of cell growth, inhibition of tumor initiation, inhibition of adhesion, migration and angiogenesis, apoptosis, interaction with gut microbiota, regulation of cellular signal transduction pathways and xenobiotic metabolizing enzymes, etc. Moreover, this review will also focus on the natural dietary compounds’ bioavailability, their synergistic protective effect, as well as the association with conventional therapy. Dietary natural compounds play a major role in colorectal chemoprevention and continuous research in this field is needed.


Cancers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2361
Author(s):  
Filippo Vernia ◽  
Marco Valvano ◽  
Stefano Fabiani ◽  
Gianpiero Stefanelli ◽  
Salvatore Longo ◽  
...  

Colorectal cancer (CRC) is one of the leading causes of cancer-related death in the Western world. Early detection decreases incidence and mortality. Screening programs based on fecal occult blood testing help identify patients requiring endoscopic examination, but accuracy is far from optimal. Among the alternative strategies, volatile organic compounds (VOCs) represent novel potentially useful biomarkers of colorectal cancer. They also represent a promising tool for the screening of both intestinal inflammation and related CRC. The review is focused on the diagnostic potential of VOCs in sporadic CRC and in inflammatory bowel diseases (IBD), which increase the risk of CRC, analyzing future clinical applications. Despite limitations related to inadequate strength of evidence, differing analytical platforms identify different VOCs, and this unconventional approach for diagnosing colorectal cancer is promising. Some VOC profiles, besides identifying inflammation, seem disease-specific in inflammatory bowel diseases. Thus, breath, urine, and fecal VOCs provide a new and promising clinical approach to differential diagnosis, evaluation of the inflammatory status, and possibly the assessment of treatment efficacy in IBD. Conversely, specific VOC patterns correlating inflammatory bowel disease and cancer risk are still lacking, and studies focused on this issue are strongly encouraged. No prospective studies have assessed the risk of CRC development by using VOCs in samples collected before the onset of disease, both in the general population and in patients with IBD.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2234
Author(s):  
Oscar Illescas ◽  
Miriam Rodríguez-Sosa ◽  
Manuela Gariboldi

Gut microbiota dysbiosis is a common feature in colorectal cancer (CRC) and inflammatory bowel diseases (IBD). Adoption of the Mediterranean diet (MD) has been proposed as a therapeutic approach for the prevention of multiple diseases, and one of its mechanisms of action is the modulation of the microbiota. We aimed to determine whether MD can be used as a preventive measure against cancer and inflammation-related diseases of the gut, based on its capacity to modulate the local microbiota. A joint meta-analysis of publicly available 16S data derived from subjects following MD or other diets and from patients with CRC, IBD, or other gut-related diseases was conducted. We observed that the microbiota associated with MD was enriched in bacteria that promote an anti-inflammatory environment but low in taxa with pro-inflammatory properties capable of altering intestinal barrier functions. We found an opposite trend in patients with intestinal diseases, including cancer. Some of these differences were maintained even when MD was compared to healthy controls without a defined diet. Our findings highlight the unique effects of MD on the gut microbiota and suggest that integrating MD principles into a person’s lifestyle may serve as a preventive method against cancer and other gut-related diseases.


2019 ◽  
Vol 12 ◽  
pp. 175628481882225 ◽  
Author(s):  
Jonathan P. Segal ◽  
Benjamin H. Mullish ◽  
Mohammed Nabil Quraishi ◽  
Animesh Acharjee ◽  
Horace R. T. Williams ◽  
...  

The aetiopathogenesis of inflammatory bowel diseases (IBD) involves the complex interaction between a patient’s genetic predisposition, environment, gut microbiota and immune system. Currently, however, it is not known if the distinctive perturbations of the gut microbiota that appear to accompany both Crohn’s disease and ulcerative colitis are the cause of, or the result of, the intestinal inflammation that characterizes IBD. With the utilization of novel systems biology technologies, we can now begin to understand not only details about compositional changes in the gut microbiota in IBD, but increasingly also the alterations in microbiota function that accompany these. Technologies such as metagenomics, metataxomics, metatranscriptomics, metaproteomics and metabonomics are therefore allowing us a deeper understanding of the role of the microbiota in IBD. Furthermore, the integration of these systems biology technologies through advancing computational and statistical techniques are beginning to understand the microbiome interactions that both contribute to health and diseased states in IBD. This review aims to explore how such systems biology technologies are advancing our understanding of the gut microbiota, and their potential role in delineating the aetiology, development and clinical care of IBD.


2019 ◽  
Vol 7 (2) ◽  
pp. 33 ◽  
Author(s):  
Pablo Alagón Fernández del Campo ◽  
Alejandro De Orta Pando ◽  
Juan Ignacio Straface ◽  
José Ricardo López Vega ◽  
Diego Toledo Plata ◽  
...  

: Recent investigations have shown that different conditions such as diet, the overuse of antibiotics or the colonization of pathogenic microorganisms can alter the population status of the intestinal microbiota. This modification can produce a change from homeostasis to a condition known as imbalance or dysbiosis; however, the role-played by dysbiosis and the development of inflammatory bowel diseases (IBD) has been poorly understood. It was actually not until a few years ago that studies started to develop regarding the role that dendritic cells (DC) of intestinal mucosa play in the sensing of the gut microbiota population. The latest studies have focused on describing the DC modulation, specifically on tolerance response involving T regulatory cells or on the inflammatory response involving reactive oxygen species and tissue damage. Furthermore, the latest studies have also focused on the protective and restorative effect of the population of the gut microbiota given by probiotic therapy, targeting IBD and other intestinal pathologies. In the present work, the authors propose and summarize a recently studied complex axis of interaction between the population of the gut microbiota, the sensing of the DC and its modulation towards tolerance and inflammation, the development of IBD and the protective and restorative effect of probiotics on other intestinal pathologies.


2020 ◽  
Vol 64 ◽  
pp. 51-60 ◽  
Author(s):  
Muhammad Shahid Nadeem ◽  
Vikas Kumar ◽  
Fahad A. Al-Abbasi ◽  
Mohammad Amjad Kamal ◽  
Firoz Anwar

Sign in / Sign up

Export Citation Format

Share Document