scholarly journals Will giant polar amphipods be first to fare badly in an oxygen-poor ocean? Testing hypotheses linking oxygen to body size

2019 ◽  
Vol 374 (1778) ◽  
pp. 20190034 ◽  
Author(s):  
John I. Spicer ◽  
Simon A. Morley

It has been suggested that giant Antarctic marine invertebrates will be particularly vulnerable to declining O 2 levels as our ocean warms in line with current climate change predictions. Our study provides some support for this oxygen limitation hypothesis, with larger body sizes being generally more sensitive to O 2 reductions than smaller body sizes. However, it also suggests that the overall picture is a little more complex. We tested predictions from three different, but overlapping, O 2 -related hypotheses accounting for gigantism, using four Antarctic amphipod species encompassing a wide range of body sizes. We found a significant effect of body size, but also of species, in their respiratory responses to acutely declining O 2 tensions. The more active lifestyle of intermediate-sized Prostebbingia brevicornis was supported by a better respiratory performance than predicted by the oxygen limitation hypothesis alone, but consistent with the symmorphosis hypothesis. We suggest that giant polar amphipods are likely to be some of the first to fare badly in an O 2 -poor ocean. However, the products of past evolutionary innovation, such as respiratory pigments that enhance O 2 -transport and novel gas exchange structures, may in some species offset any respiratory disadvantages of either large or small body size. This article is part of the theme issue ‘Physiological diversity, biodiversity patterns and global climate change: testing key hypotheses involving temperature and oxygen’.

2020 ◽  
Vol 40 (3) ◽  
pp. 325-329
Author(s):  
Joshua T Fields ◽  
Hayden K Mullen ◽  
Clayr M Kroenke ◽  
Kyla A Salomon ◽  
Abby J Craft ◽  
...  

Abstract The spider crab Petramithrax pygmaeus (Bell, 1836), a phyletic dwarf, was used to test predictions regarding reproductive performance in small marine invertebrates. Considering the disproportional increase in brooding costs and the allometry of egg production with increasing body size, it was expected that this minute-size species would produce large broods compared to closely related species that attain much larger body sizes. Fecundity in P. pygmaeus females carrying early and late eggs varied, respectively, between 17 and 172 eggs crab–1 (mean ± SD = 87.97 ± 48.39) and between 13 and 159 eggs crab–1 (55.04 ± 40.29). Females did not experience brood loss during egg development. Egg volume in females carrying early and late eggs varied, respectively, between 0.13 and 0.40 mm3 (0.22 ± 0.07) and between 0.15 and 0.42 mm3 (0.26 ± 0.06 mm3). Reproductive output (RO) varied between 0.91 and 8.73% (3.81 ± 2.17%) of female dry body weight. The RO of P. pygmaeus was lower than that reported for closely related species with larger body sizes. The slope (b = 0.95 ± 0.15) of the line describing the relationship between brood and parental female dry weight was not statistically significant from unity. Overall, our results disagree with the notion that the allometry of gamete production and increased physiological costs with increased brood size explain the association between brooding and small body size in marine invertebrates. Comparative studies on the reproductive investment of brooding species belonging to monophyletic clades with extensive differences in body size are warranted to further our understanding about disparity in egg production in brooding marine invertebrates.


2014 ◽  
Vol 10 (6) ◽  
pp. 20140261 ◽  
Author(s):  
John P. DeLong

The parameters that drive population dynamics typically show a relationship with body size. By contrast, there is no theoretical or empirical support for a body-size dependence of mutual interference, which links foraging rates to consumer density. Here, I develop a model to predict that interference may be positively or negatively related to body size depending on how resource body size scales with consumer body size. Over a wide range of body sizes, however, the model predicts that interference will be body-size independent. This prediction was supported by a new dataset on interference and consumer body size. The stabilizing effect of intermediate interference therefore appears to be roughly constant across size, while the effect of body size on population dynamics is mediated through other parameters.


2019 ◽  
Vol 76 (4) ◽  
Author(s):  
Ying Guo ◽  
Yue Lu ◽  
Yousry A. El-Kassaby ◽  
Lei Feng ◽  
Guibing Wang ◽  
...  

Abstract Key message We developed a climatic response function using 20-year tree height observed from 45Ginkgo bilobaplantations in China and used it to predict the growth and habitat responses to anticipated climate change. We projected northward and upward shifts in the species habitat and productive areas, but a dramatic contraction of the species distribution is unlikely to occur at least during the present century. Context Ginkgo biloba is the only living species in the division Ginkgophyta. The species exists in small natural populations in southeastern China but is cultivated across China and the world. The species’ future under climate change is of concern. Aims This study was initiated to model the species’ growth response to climate change and to predict its range of suitable habitat under future climates. Methods Using height data from 45 20 years old plantations growing under a wide range of climatic conditions across China, we developed univariate and bivariate climatic response functions to identify the climate requirements of the species. Results According to the amount of variance explained (> 70%) and the high level of agreement (> 99%) with independent species occurrence coordinates, the developed climate response function was highly accurate and credible. Projections for future periods (2011–2040, 2041–2070, and 2071–2100) under the Representative Concentration Pathway 4.5 (RCP4.5) scenario indicated that the areas of potential suitable habitat would increase (25–67 million hectares). It would also be associated with northward (0.21–0.62° in latitude) and elevational (24–75 m) shifts. Conclusion Global climate change is projected to increase the area of potential suitable habitats for Ginkgo and shift its spatial distributions northward and upward.


2019 ◽  
Vol 26 (1) ◽  
pp. 80-102 ◽  
Author(s):  
Maria Byrne ◽  
Shawna A. Foo ◽  
Pauline M. Ross ◽  
Hollie M. Putnam

1994 ◽  
Vol 42 (3) ◽  
pp. 307 ◽  
Author(s):  
PD Olsen ◽  
RB Cunningham ◽  
CF Donnelly

This paper describes three comprehensive new models of the allometric relationships between egg volume, clutch volume and shape, and body weight. Mean egg dimensions, clutch sizes and adult body weights were obtained for 326 species, mainly of four bird types: raptors (including owls), shorebirds, frogmouths (including nightjars), and storks (including the New World vultures). These are groups in which there is a wide range of body sizes and of sexual dimorphism in body size (in direction and degree). Female body weight alone accounted for 92% of the variation in egg volume. Sexual dimorphism in body size, phylogenetic relationship, and clutch size were significant contributors to the model of egg volume; their addition increased the explained variance to over 98%. The model was curvilinear (quadratic) in form, rather than linear as assumed in previous models. Larger species laid smaller eggs than expected under a simple power function. For the fitted model, within bird types, generic groupings had parallel curvilinear slopes but differing intercepts. Between bird types, the slopes differed. Clutch volume was scaled to body weight; all the bird types had a common slope, which was curvilinear. Body weight and dimorphism accounted for 89.5% of the variation in clutch volume. For all bird types, eggs became proportionally longer in shape as body weight increased, according to a simple power law. The relevance of these relationships to hypotheses on the evolution and adaptive significance of sexual dimorphism and to the trade-off between egg size and clutch size is discussed briefly.


2016 ◽  
Vol 11 (1) ◽  
pp. 66-68 ◽  
Author(s):  
Marco Bindi ◽  
Paulo A.L.D. Nunes

This special symposium focuses on the analysis of climate change impacts on the spatial dimension of vineyard land use. This includes the analysis of projections of current vineyard areas that are lost due to climate change, those that are retained despite climate change, and new vineyard areas that are created due to climate change. The analysis explores the use of GIS over regional and global scales. Furthermore, this symposium sheds light on the socioeconomic dimension of climate change impacts on the wine industry and viticulture by exploring the use of an ecosystem service approach. Such an economic sector is responsible for the provision of a wide range of cobenefits in addition to wine products. These include biodiversity protection and cultural services, including landscape values and ecotourism benefits (see Nunes and Loureiro, forthcoming). In this context, this symposium endorses the ecosystem service approach to the management of vineyards as a regional strategic plan to promote sustainable development. This embraces a broad range of issues including (1) the improvement of people's quality of life; (2) the increase of prospects for more jobs in rural areas; and (3) the protection of regional commons, including both biodiversity and cultural heritage–oriented commons.


2003 ◽  
Vol 3 (2) ◽  
pp. 87-93 ◽  
Author(s):  
Robert Pincus

The traditional connections between wine and location reflect local climate. Climate change threatens these connections, and vintners have a wide range of responses to this impending problem. This article explores the source of the associations between wines and locales, and outlines the causes for global climate change. Three wine makers describe how they might adapt to a changed climate. Their responses run the gamut from adaptation in the vineyard aimed at maintaining current styles, to radical reinvention of the societal and legal structure of the local wine industry.


Author(s):  
Robert Reiley

The National Environmental Policy Act (“NEPA”) is the first environmental charter of the United States. 1 Signed into law on January 1, 1970, NEPA addresses the need for overarching national environmental guidance in the country. During the course of its forty year history, NEPA has been used to challenge a wide range of federal actions including the issuance of operating permits under the Clean Air Act,2 the approval of forest management plans approved under the National Forest Management Act,3 the construction of highways under the Federal-Aid Highways Act,4 and the issuance of oil leases under the Outer Continental Shelf Lands Act.5 Given the breadth of NEPA’s applicability, it was inevitable that NEPA would become a tool to combat climate change. The use of NEPA to require federal agencies to take a “hard look” at greenhouse gas (“GHG”) emissions makes perfect sense because many federal actions directly or indirectly contribute to GHG emissions. Since 1990, in City of Los Angeles v. NHTSA,6 plaintiffs have used NEPA, successfully and unsuccessfully, to challenge federal actions that might have an impact on the global climate.


Data ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 72 ◽  
Author(s):  
Abhishek Gaur ◽  
Michael Lacasse ◽  
Marianne Armstrong

Buildings and homes in Canada will be exposed to unprecedented climatic conditions in the future as a consequence of global climate change. To improve the climate resiliency of existing and new buildings, it is important to evaluate their performance over current and projected future climates. Hygrothermal and whole building simulation models, which are important tools for assessing performance, require continuous climate records at high temporal frequencies of a wide range of climate variables for input into the kinds of models that relate to solar radiation, cloud-cover, wind, humidity, rainfall, temperature, and snow-cover. In this study, climate data that can be used to assess the performance of building envelopes under current and projected future climates, concurrent with 2 °C and 3.5 °C increases in global temperatures, are generated for 11 major Canadian cities. The datasets capture the internal variability of the climate as they are comprised of 15 realizations of the future climate generated by dynamically downscaling future projections from the CanESM2 global climate model and thereafter bias-corrected with reference to observations. An assessment of the bias-corrected projections suggests, as a consequence of global warming, future increases in the temperatures and precipitation, and decreases in the snow-cover and wind-speed for all cities.


Sign in / Sign up

Export Citation Format

Share Document