scholarly journals Universal rules for the interaction of selection and transmission in evolution

2020 ◽  
Vol 375 (1797) ◽  
pp. 20190353 ◽  
Author(s):  
Sean H. Rice

The Price equation shows that evolutionary change can be written in terms of two fundamental variables: the fitness of parents (or ancestors) and the phenotypes of their offspring (descendants). Its power lies in the fact that it requires no simplifying assumptions other than a closed population, but realizing the full potential of Price’s result requires that we flesh out the mathematical representation of both fitness and offspring phenotype. Specifically, both need to be treated as stochastic variables that are themselves functions of parental phenotype. Here, I show how new mathematical tools allow us to do this without introducing any simplifying assumptions. Combining this representation of fitness and phenotype with the stochastic Price equation reveals fundamental rules underlying multivariate evolution and the evolution of inheritance. Finally, I show how the change in the entire phenotype distribution of a population, not simply the mean phenotype, can be written as a single compact equation from which the Price equation and related results can be derived as special cases. This article is part of the theme issue ‘Fifty years of the Price equation’.

Author(s):  
H. Bethge

Besides the atomic surface structure, diverging in special cases with respect to the bulk structure, the real structure of a surface Is determined by the step structure. Using the decoration technique /1/ it is possible to image step structures having step heights down to a single lattice plane distance electron-microscopically. For a number of problems the knowledge of the monatomic step structures is important, because numerous problems of surface physics are directly connected with processes taking place at these steps, e.g. crystal growth or evaporation, sorption and nucleatlon as initial stage of overgrowth of thin films.To demonstrate the decoration technique by means of evaporation of heavy metals Fig. 1 from our former investigations shows the monatomic step structure of an evaporated NaCI crystal. of special Importance Is the detection of the movement of steps during the growth or evaporation of a crystal. From the velocity of a step fundamental quantities for the molecular processes can be determined, e.g. the mean free diffusion path of molecules.


Author(s):  
Daniel Roten ◽  
Kim B. Olsen

ABSTRACT We use deep learning to predict surface-to-borehole Fourier amplification functions (AFs) from discretized shear-wave velocity profiles. Specifically, we train a fully connected neural network and a convolutional neural network using mean AFs observed at ∼600 KiK-net vertical array sites. Compared with predictions based on theoretical SH 1D amplifications, the neural network (NN) results in up to 50% reduction of the mean squared log error between predictions and observations at sites not used for training. In the future, NNs may lead to a purely data-driven prediction of site response that is independent of proxies or simplifying assumptions.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Bui Duc Tinh ◽  
Nguyen Quang Hoc ◽  
Dinh Quang Vinh ◽  
Tran Dinh Cuong ◽  
Nguyen Duc Hien

The analytic expressions for the thermodynamic and elastic quantities such as the mean nearest neighbor distance, the free energy, the isothermal compressibility, the thermal expansion coefficient, the heat capacities at constant volume and at constant pressure, the Young modulus, the bulk modulus, the rigidity modulus, and the elastic constants of binary interstitial alloy with body-centered cubic (BCC) structure, and the small concentration of interstitial atoms (below 5%) are derived by the statistical moment method. The theoretical results are applied to interstitial alloy FeC in the interval of temperature from 100 to 1000 K and in the interval of interstitial atom concentration from 0 to 5%. In special cases, we obtain the thermodynamic quantities of main metal Fe with BCC structure. Our calculated results for some thermodynamic and elastic quantities of main metal Fe and alloy FeC are compared with experiments.


2012 ◽  
Vol 2012 ◽  
pp. 1-16
Author(s):  
Renbin Liu ◽  
Yong Wu

Based on the renewal process theory we develop a decomposition method to analyze the reliability of the repair facility in ann-unit series system with vacations. Using this approach, we study the unavailability and the mean replacement number during(0,t]of the repair facility. The method proposed in this work is novel and concise, which can make us see clearly the structures of the facility indices of a series system with an unreliable repair facility, two convolution relations. Special cases and numerical examples are given to show the validity of our method.


2020 ◽  
pp. 196-220
Author(s):  
Paul Weirich

Governments regulate risks on behalf of the people they serve. Given that regulatory agencies aim for regulatory measures that the public would endorse if rational and informed, the mean-risk method of evaluating acts provides valuable guidance. It offers a way of constructing for a citizen informed probability and utility assignments for a regulation’s possible outcomes, and using these assignments to obtain for the citizen an informed utility assignment for the regulation. The theory of cooperative games combines the utility assignments of multiple agents to support a collective act, and under simplifying assumptions, supports an act that maximizes collective utility, defined as a sum of the act’s utilities for the agents, in the tradition of utilitarianism. This approach to regulation accommodates acts targeting information-sensitive, evidential risks as well as acts targeting physical risks. Verification of a reduction in an evidential risk can meet the standards of objectivity that the law adopts.


2020 ◽  
Vol 375 (1797) ◽  
pp. 20190356 ◽  
Author(s):  
Alan Grafen

The Price equation is widely recognized as capturing conceptually important properties of natural selection, and is often used to derive versions of Fisher’s fundamental theorem of natural selection, the secondary theorems of natural selection and other significant results. However, class structure is not usually incorporated into these arguments. From the starting point of Fisher’s original connection between fitness and reproductive value, a principled way of incorporating reproductive value and structured populations into the Price equation is explained, with its implications for precise meanings of (two distinct kinds of) reproductive value and of fitness. Once the Price equation applies to structured populations, then the other equations follow. The fundamental theorem itself has a special place among these equations, not only because it always incorporated class structure (and its method is followed for general class structures), but also because that is the result that justifies the important idea that these equations identify the effect of natural selection. The precise definitions of reproductive value and fitness have striking and unexpected features. However, a theoretical challenge emerges from the articulation of Fisher’s structure: is it possible to retain the ecological properties of fitness as well as its evolutionary out-of-equilibrium properties? This article is part of the theme issue ‘Fifty years of the Price equation’.


1964 ◽  
Vol 1 (02) ◽  
pp. 335-346 ◽  
Author(s):  
A. Reichel ◽  
C. A. Wilkins

The problem of determining infinitely dilute resonance integrals is formulated in renewal theoretical terms. The mean value of the integral for a single resonance is determined in simple closed form. On the assumption that Wigner's hypothesis holds, the resonance density is determined, and a usable approximation to it is derived. An expression for the infinitely dilute resonance integral in the statistical region is then given and its value calculated in special cases and compared with the results of a previous computation.


1985 ◽  
Vol 15 (2) ◽  
pp. 103-121 ◽  
Author(s):  
William S. Jewell ◽  
Rene Schnieper

AbstractCredibility theory refers to the use of linear least-squares theory to approximate the Bayesian forecast of the mean of a future observation; families are known where the credibility formula is exact Bayesian. Second-moment forecasts are also of interest, for example, in assessing the precision of the mean estimate. For some of these same families, the second-moment forecast is exact in linear and quadratic functions of the sample mean. On the other hand, for the normal distribution with normal-gamma prior on the mean and variance, the exact forecast of the variance is a linear function of the sample variance and the squared deviation of the sample mean from the prior mean. Bühlmann has given a credibility approximation to the variance in terms of the sample mean and sample variance.In this paper, we present a unified approach to estimating both first and second moments of future observations using linear functions of the sample mean and two sample second moments; the resulting least-squares analysis requires the solution of a 3 × 3 linear system, using 11 prior moments from the collective and giving joint predictions of all moments of interest. Previously developed special cases follow immediately. For many analytic models of interest, 3-dimensional joint prediction is significantly better than independent forecasts using the “natural” statistics for each moment when the number of samples is small. However, the expected squared-errors of the forecasts become comparable as the sample size increases.


2020 ◽  
Vol 375 (1797) ◽  
pp. 20190364 ◽  
Author(s):  
Deborah E. Shelton ◽  
Richard E. Michod

The Price equation embodies the ‘conditions approach’ to evolution in which the Darwinian conditions of heritable variation in fitness are represented in equation form. The equation can be applied recursively, leading to a partition of selection at the group and individual levels. After reviewing the well-known issues with the Price partition, as well as issues with a partition based on contextual analysis, we summarize a partition of group and individual selection based on counterfactual fitness, the fitness that grouped cells would have were they solitary. To understand ‘group selection’ in multi-level selection models, we assume that only group selection can make cells suboptimal when they are removed from the group. Our analyses suggest that there are at least three kinds of selection that can be occurring at the same time: group-specific selection along with two kinds of individual selection, within-group selection and global individual selection. Analyses based on counterfactual fitness allow us to specify how close a group is to being a pseudo-group, and this can be a basis for quantifying progression through an evolutionary transition in individuality (ETI). During an ETI, fitnesses at the two levels, group and individual, become decoupled, in the sense that fitness in a group may be quite high, even as counterfactual fitness goes to zero. This article is part of the theme issue ‘Fifty years of the Price equation’.


2020 ◽  
Vol 375 (1797) ◽  
pp. 20190351 ◽  
Author(s):  
Steven A. Frank

The Price equation describes the change in populations. Change concerns some value, such as biological fitness, information or physical work. The Price equation reveals universal aspects for the nature of change, independently of the meaning ascribed to values. By understanding those universal aspects, we can see more clearly why fundamental mathematical results in different disciplines often share a common form. We can also interpret more clearly the meaning of key results within each discipline. For example, the mathematics of natural selection in biology has a form closely related to information theory and physical entropy. Does that mean that natural selection is about information or entropy? Or do natural selection, information and entropy arise as interpretations of a common underlying abstraction? The Price equation suggests the latter. The Price equation achieves its abstract generality by partitioning change into two terms. The first term naturally associates with the direct forces that cause change. The second term naturally associates with the changing frame of reference. In the Price equation’s canonical form, total change remains zero because the conservation of total probability requires that all probabilities invariantly sum to one. Much of the shared common form for the mathematics of different disciplines may arise from that seemingly trivial invariance of total probability, which leads to the partitioning of total change into equal and opposite components of the direct forces and the changing frame of reference. This article is part of the theme issue ‘Fifty years of the Price equation’.


Sign in / Sign up

Export Citation Format

Share Document