scholarly journals Genome-wide analysis of experimentally evolved Candida auris reveals multiple novel mechanisms of multidrug-resistance

2021 ◽  
Vol 3 (12) ◽  
Author(s):  
Hans Carolus ◽  
Siebe Pierson ◽  
José F. Mun?oz ◽  
Ana Subotić ◽  
Rita B. Cruz ◽  
...  

Candida auris is globally recognized as an opportunistic fungal pathogen of high concern, due to its extensive multidrug-resistance (MDR). Still, molecular mechanisms of MDR are largely unexplored. This is the first account of genome wide evolution of MDR in C. auris obtained through serial in vitro exposure to azoles, polyenes and echinocandins. We show the stepwise accumulation of multiple novel mutations in genes known and unknown in antifungal drug resistance, albeit almost all new for C. auris. Echinocandin resistance was accompanied by a codon deletion in FKS1hot spot 1 and a substitution in FKS1 ‘novel’ hot spot 3. Mutations in ERG3 and CIS2 further increased the echinocandin MIC. Decreased azole susceptibility was linked to a mutation in transcription factor TAC1b and overexpression of the drug efflux pump Cdr1; a segmental duplication of chromosome 1 containing ERG11; and a whole chromosome 5 duplication, which contains TAC1b. The latter was associated with increased expression of ERG11, TAC1band CDR2, but not CDR1. The simultaneous emergence of nonsense mutations in ERG3 and ERG11 was shown to decrease amphotericin B susceptibility, accompanied with fluconazole cross resistance. A mutation in MEC3, a gene mainly known for its role in DNA damage homeostasis, further increased the polyene MIC. Overall, this study shows the alarming potential and diversity for MDR development in C. auris, even in a clade until now not associated with MDR (clade II),hereby stressing its clinical importance and the urge for future research.

Author(s):  
Hans Carolus ◽  
Siebe Pierson ◽  
José F. Muñoz ◽  
Ana Subotić ◽  
Rita B. Cruz ◽  
...  

AbstractCandida auris is globally recognized as an opportunistic fungal pathogen of high concern, due to its extensive multidrug-resistance (MDR). Still, molecular mechanisms of MDR are largely unexplored. This is the first account of genome wide evolution of MDR in C. auris obtained through serial in vitro exposure to azoles, polyenes and echinocandins. We show the stepwise accumulation of multiple novel mutations in genes known and unknown in antifungal drug resistance, albeit almost all new for C. auris. Echinocandin resistance evolved through a codon deletion in FKS1 accompanied by a substitution in FKS1 hot spot 3. Mutations in ERG3 and CIS2 further increased the echinocandin MIC. Decreased azole susceptibility was acquired through a gain of function mutation in transcription factor TAC1b yielding overexpression of the drug efflux pump Cdr1; a segmental duplication of chromosome 1 containing ERG11; and a whole chromosome 5 duplication, which contains TAC1b. The latter was associated with increased expression of ERG11, TAC1b and CDR2, but not CDR1. The simultaneous emergence of nonsense mutations in ERG3 and ERG11, presumably leading to the abrogation of ergosterol synthesis, was shown to decrease amphotericin B susceptibility, accompanied with fluconazole cross resistance. A mutation in MEC3, a gene mainly known for its role in DNA damage homeostasis, further increased the polyene MIC. Overall, this study shows the alarming potential and diversity for MDR development in C. auris, even in a clade until now not associated with MDR (clade II), hereby stressing its clinical importance and the urge for future research.ImportanceC. auris is a recently discovered human fungal pathogens and has shown an alarming potential for multi- and pan-resistance towards all classes of antifungals most commonly used in the clinic. Currently, C. auris has been globally recognized as a nosocomial pathogen of high concern due to this evolutionary potential. So far, this is the first study in which the stepwise progression of MDR in C. auris is monitored in vitro. Multiple novel mutations in known ‘resistance genes’ and genes previously not or vaguely associated with drug resistance reveal rapid MDR evolution in a C. auris clade II isolate. Additionally, this study shows that in vitro experimental evolution can be a powerful tool to discover new drug resistance mechanisms, although it has its limitations.


mBio ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Hans Carolus ◽  
Siebe Pierson ◽  
José F. Muñoz ◽  
Ana Subotić ◽  
Rita B. Cruz ◽  
...  

ABSTRACT Candida auris is globally recognized as an opportunistic fungal pathogen of high concern, due to its extensive multidrug resistance (MDR). Still, molecular mechanisms of MDR are largely unexplored. This is the first account of genome-wide evolution of MDR in C. auris obtained through serial in vitro exposure to azoles, polyenes, and echinocandins. We show the stepwise accumulation of copy number variations and novel mutations in genes both known and unknown in antifungal drug resistance. Echinocandin resistance was accompanied by a codon deletion in FKS1 hot spot 1 and a substitution in FKS1 “novel” hot spot 3. Mutations in ERG3 and CIS2 further increased the echinocandin MIC. Decreased azole susceptibility was linked to a mutation in transcription factor TAC1b and overexpression of the drug efflux pump Cdr1, a segmental duplication of chromosome 1 containing ERG11, and a whole chromosome 5 duplication, which contains TAC1b. The latter was associated with increased expression of ERG11, TAC1b, and CDR2 but not CDR1. The simultaneous emergence of nonsense mutations in ERG3 and ERG11 was shown to decrease amphotericin B susceptibility, accompanied with fluconazole cross-resistance. A mutation in MEC3, a gene mainly known for its role in DNA damage homeostasis, further increased the polyene MIC. Overall, this study shows the alarming potential for and diversity of MDR development in C. auris, even in a clade until now not associated with MDR (clade II), stressing its clinical importance and the urge for future research. IMPORTANCE Candida auris is a recently discovered human fungal pathogen and has shown an alarming potential for developing multi- and pan-resistance toward all classes of antifungals most commonly used in the clinic. Currently, C. auris has been globally recognized as a nosocomial pathogen of high concern due to this evolutionary potential. So far, this is the first study in which the stepwise progression of multidrug resistance (MDR) in C. auris is monitored in vitro. Multiple novel mutations in known resistance genes and genes previously not or vaguely associated with drug resistance reveal rapid MDR evolution in a C. auris clade II isolate. Additionally, this study shows that in vitro experimental evolution can be a powerful tool to discover new drug resistance mechanisms, although it has its limitations.


1999 ◽  
Vol 43 (10) ◽  
pp. 2395-2399 ◽  
Author(s):  
Leon Iri Kupferwasser ◽  
Ronald A. Skurray ◽  
Melissa H. Brown ◽  
Neville Firth ◽  
Michael R. Yeaman ◽  
...  

ABSTRACT Thrombin-induced platelet microbicidal protein 1 (tPMP-1) is a small, cationic peptide released from rabbit platelets following thrombin stimulation. In vitro resistance to this peptide among strains of Staphylococcus aureus correlates with the survival advantage of such strains at sites of endothelial damage in humans as well as in experimental endovascular infections. The mechanisms involved in the phenotypic resistance of S. aureus to tPMP-1 are not fully delineated. The plasmid-encoded staphylococcal gene qacA mediates multidrug resistance to multiple organic cations via a proton motive force-dependent efflux pump. We studied whether the qacA gene might also confer resistance to cationic tPMP-1. Staphylococcal plasmids encoding qacA were found to confer resistance to tPMP-1 in an otherwise susceptible parental strain. Deletions which removed the region containing theqacA gene in the S. aureus multiresistance plasmid pSK1 abolished tPMP-1 resistance. Resistance to tPMP-1 in theqacA-bearing strains was inoculum independent but peptide concentration dependent, with the level of resistance decreasing at higher peptide concentrations for a given inoculum. There was no apparent cross-resistance in qacA-bearing strains to other endogenous cationic antimicrobial peptides which are structurally distinct from tPMP-1, including human neutrophil defensin 1, protamine, or the staphylococcal lantibiotics pep5 and nisin. These data demonstrate that the staphylococcal multidrug resistance geneqacA also mediates in vitro resistance to cationic tPMP-1.


2020 ◽  
Vol 8 (11) ◽  
pp. 1647 ◽  
Author(s):  
Anteneh Amsalu ◽  
Sylvia A. Sapula ◽  
Miguel De Barros Lopes ◽  
Bradley J. Hart ◽  
Anh H. Nguyen ◽  
...  

Pseudomonas aeruginosa is an opportunistic pathogen displaying high intrinsic antimicrobial resistance and the ability to thrive in different ecological environments. In this study, the ability of P. aeruginosa to develop simultaneous resistance to multiple antibiotics and disinfectants in different natural niches were investigated using strains collected from clinical samples, veterinary samples, and wastewater. The correlation between biocide and antimicrobial resistance was determined by employing principal component analysis. Molecular mechanisms linking biocide and antimicrobial resistance were interrogated by determining gene expression using RT-qPCR and identifying a potential genetic determinant for co- and cross-resistance using whole-genome sequencing. A subpopulation of P. aeruginosa isolates belonging to three sequence types was resistant against the common preservative benzalkonium chloride and showed cross-resistance to fluoroquinolones, cephalosporins, aminoglycosides, and multidrug resistance. Of these, the epidemiological high-risk ST235 clone was the most abundant. The overexpression of the MexAB-OprM drug efflux pump resulting from amino acid mutations in regulators MexR, NalC, or NalD was the major contributing factor for cross-resistance that could be reversed by an efflux pump inhibitor. This is the first comparison of antibiotic-biocide cross-resistance in samples isolated from different ecological niches and serves as a confirmation of laboratory-based studies on biocide adapted isolates. The isolates from wastewater had a higher incidence of multidrug resistance and biocide-antibiotic cross-resistance than those from clinical and veterinary settings.


Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 175
Author(s):  
Ahmed M. Zheoat ◽  
Samya Alenezi ◽  
Ehab Kotb Elmahallawy ◽  
Marzuq A. Ungogo ◽  
Ali H. Alghamdi ◽  
...  

Trypanosomiasis and leishmaniasis are a group of neglected parasitic diseases caused by several species of parasites belonging to the family Trypansomatida. The present study investigated the antitrypanosomal and antileishmanial activity of chalcones and flavanones from Polygonum salicifolium, which grows in the wetlands of Iraq. The phytochemical evaluation of the plant yielded two chalcones, 2′,4′-dimethoxy-6′-hydroxychalcone and 2′,5′-dimethoxy-4′,6′-dihydroxychalcone, and two flavanones, 5,7-dimethoxyflavanone and 5,8-dimethoxy-7-hydroxyflavanone. The chalcones showed a good antitrypanosomal and antileishmanial activity while the flavanones were inactive. The EC50 values for 2′,4′-dimethoxy-6′-hydroxychalcone against Trypanosoma brucei brucei (0.5 μg/mL), T. congolense (2.5 μg/mL), and Leishmania mexicana (5.2 μg/mL) indicated it was the most active of the compounds. None of the compounds displayed any toxicity against a human cell line, even at 100 µg/mL, or cross-resistance with first line clinical trypanocides, such as diamidines and melaminophenyl arsenicals. Taken together, our study provides significant data in relation to the activity of chalcones and flavanones from P. salicifolium against both parasites in vitro. Further future research is suggested in order to investigate the mode of action of the extracted chalcones against the parasites.


2017 ◽  
Vol 61 (11) ◽  
Author(s):  
Susanne Jacobsson ◽  
Susanne Paukner ◽  
Daniel Golparian ◽  
Jörgen S. Jensen ◽  
Magnus Unemo

ABSTRACT We evaluated the activity of the novel semisynthetic pleuromutilin lefamulin, inhibiting protein synthesis and growth, and the effect of efflux pump inactivation on clinical gonococcal isolates and reference strains (n = 251), including numerous multidrug-resistant and extensively drug-resistant isolates. Lefamulin showed potent activity against all gonococcal isolates, and no significant cross-resistance to other antimicrobials was identified. Further studies of lefamulin are warranted, including in vitro selection and mechanisms of resistance, pharmacokinetics/pharmacodynamics, optimal dosing, and performance in randomized controlled trials.


2021 ◽  
Vol 22 (21) ◽  
pp. 11500
Author(s):  
Anshul Sharma ◽  
Hyo-Kyoung Choi ◽  
Yeon-Kye Kim ◽  
Hae-Jeung Lee

Until now, several studies have looked at the issue of anthocyanin and cancer, namely the preventive and inhibitory effects of anthocyanins, as well as the underlying molecular processes. However, no targeted review is available regarding the anticarcinogenic effects of delphinidin and its glycosides on various cancers and their plausible molecular mechanisms. Considerable evidence shows significant anticancer properties of delphinidin-rich preparations and delphinidin alone both in vitro and in vivo. This review covers the in vitro and preclinical implications of delphinidin-mediated cell protection and cancer prevention; thus, we strongly recommend that delphinidin-rich preparations be further investigated as potential functional food, dietary antioxidant supplements, and natural health products targeting specific chronic diseases, including cancer. In addition to in vitro investigations, future research should focus on more animal and human studies to determine the true potential of delphinidin.


2007 ◽  
Vol 283 (3) ◽  
pp. 1723-1731 ◽  
Author(s):  
Brian J. Ferguson ◽  
Clare Alexander ◽  
Simona W. Rossi ◽  
Ingrid Liiv ◽  
Ana Rebane ◽  
...  

Developing T cells encounter peripheral self-antigens in the thymus in order to delete autoreactive clones. It is now known that the autoimmune regulator protein (AIRE), which is expressed in thymic medullary epithelial cells, plays a key role in regulating the thymic transcription of these peripheral tissue-specific antigens. Mutations in the AIRE gene are associated with a severe multiorgan autoimmune syndrome (APECED), and autoimmune reactivities are manifest in AIRE-deficient mice. Functional AIRE protein is expressed as distinct nuclear puncta, although no structural basis existed to explain their relevance to disease. In addressing the cell biologic basis for APECED, we made the unexpected discovery that an AIRE mutation hot spot lies in a caspase recruitment domain. Combined homology modeling and in vitro data now show how APECED mutations influence the activity of this transcriptional regulator. We also provide novel in vivo evidence for AIRE's association with a global transcription cofactor, which may underlie AIRE's focal, genome-wide, alteration of the transcriptome.


Author(s):  
Jing-Quan Wang ◽  
Qiu-Xu Teng ◽  
Zi-Ning Lei ◽  
Ning Ji ◽  
Qingbin Cui ◽  
...  

Overexpression of ABCG2 remains a major impediment to successful cancer treatment, because ABCG2 functions as an efflux pump of chemotherapeutic agents and causes clinical multidrug resistance (MDR). Therefore, it is important to uncover effective modulators to circumvent ABCG2-mediated MDR in cancers. In this study, we reported that AZ-628, a RAF kinase inhibitor, effectively antagonizes ABCG2-mediated MDR in vitro. Our results showed that AZ-628 completely reversed ABCG2-mediated MDR at a non-toxic concentration (3 μM) without affecting ABCB1-, ABCC1-, or ABCC10 mediated MDR. Further studies revealed that the reversal mechanism was by attenuating ABCG2-mediated efflux and increasing intracellular accumulation of ABCG2 substrate drugs. Moreover, AZ-628 stimulated ABCG2-associated ATPase activity in a concentration-dependent manner. Docking and molecular dynamics simulation analysis showed that AZ-628 binds to the same site as ABCG2 substrate drugs with higher score. Taken together, our studies indicate that AZ-628 could be used in combination chemotherapy against ABCG2-mediated MDR in cancers.


2019 ◽  
pp. 1-11
Author(s):  
A. F. Ogori ◽  
A. T. Girgih ◽  
J. O. Abu ◽  
M. O. Eke

The bioactive peptides produced by enzymatic hydrolysis, acid hydrolysis and fermentation approach have been identified and used widely in research. These methods are important in enhancement or prevention and management of chronic diseases that are ravaging the world such as type -2-diabetes, hypertension, oxidative stress, cancer, and obesity. Sources of bioactive peptides have been established ranging from plant to animal and marine foods that have pharmacological effects; however these effects are dependent on target cells and peptides structure and conformations.  Plants such as hemp and animal source such as milk among others validate the findings of In vitro and In-vivo studies and the efficiency of these bioactive peptides in the management of certain chronic diseases. This article reviews the literature on bioactive peptides with concern on food sources, production and bioactive peptides application in enhancement of health and management of hypertension, diabetes and oxidative stress.  Future research efforts on bioactive peptides should be directed towards elucidating specific sequenced bioactive peptides and their molecular mechanisms, through In-vivo and In-vitro studies for specific health condition in human using nutrigenomics and peptideomic approaches.


Sign in / Sign up

Export Citation Format

Share Document