scholarly journals High mortality by nosocomial infections caused by carbapenem-resistant P. aeruginosa in a referral hospital in Brazil: facing the perfect storm

2020 ◽  
Vol 69 (12) ◽  
pp. 1388-1397
Author(s):  
Jane Eire Urzedo ◽  
Ralciane de Paula Menezes ◽  
Juliana Pena Porto ◽  
Melina Lorraine Ferreira ◽  
Iara Rossi Gonçalves ◽  
...  

Introduction. Carbapenem-resistant Pseudomonas aeruginosa is responsible for increased patient mortality. Gap Statement. Five and 30 day in-hospital all-cause mortality in patients with P. aeruginosa infections were assessed, followed by evaluations concerning potential correlations between the type III secretion system (TTSS) genotype and the production of metallo-β-lactamase (MBL). Methodology. This assessment comprised a retrospective cohort study including consecutive patients with carbapenem-resistant infections hospitalized in Brazil from January 2009 to June 2019. PCR analyses were performed to determine the presence of TTSS-encoding genes and MBL genes. Results. The 30-day and 5-day mortality rates for 262 patients were 36.6 and 17.9 %, respectively. The unadjusted survival probabilities for up to 5 days were 70.55 % for patients presenting exoU-positive isolates and 86 % for those presenting exo-negative isolates. The use of urinary catheters, as well as the presence of comorbidity conditions, secondary bacteremia related to the respiratory tract, were independently associated with death at 5 and 30 days. The exoS gene was detected in 64.8 % of the isolates, the presence of the exoT and exoY genes varied and exoU genes occurred in 19.3 % of the isolates. The exoU genotype was significantly more frequent among multiresistant strains. MBL genes were not detected in 92 % of the isolates. Conclusions. Inappropriate therapy is a crucial factor regarding the worse prognosis among patients with infections caused by multiresistant P. aeruginosa , especially those who died within 5 days of diagnosis, regardless of the genotype associated with TTSS virulence.

2020 ◽  
Vol 69 (4) ◽  
pp. 521-529 ◽  
Author(s):  
Matthew E. Wand ◽  
J. Mark Sutton

Introduction. Colistin is a last resort antibiotic for treating infections caused by carbapenem-resistant isolates. Mechanisms of resistance to colistin have been widely described in Klebsiella pneumoniae and Escherichia coli but have yet to be characterized in Citrobacter and Enterobacter species. Aim. To identify the causative mutations leading to generation of colistin resistance in Citrobacter and Enterobacter spp. Methodology. Colistin resistance was generated by culturing in increasing concentrations of colistin or by direct culture in a lethal (above MIC) concentration. Whole-genome sequencing was used to identify mutations. Fitness of resistant strains was determined by changes in growth rate, and virulence in Galleria mellonella. Results. We were able to generate colistin resistance upon exposure to sub-MIC levels of colistin, in several but not all strains of Citrobacter and Enterobacter resulting in a 16-fold increase in colistin MIC values for both species. The same individual strains also developed resistance to colistin after a single exposure at 10× MIC, with a similar increase in MIC. Genetic analysis revealed that this increased resistance was attributed to mutations in PmrB for Citrobacter and PhoP in Enterobacter , although we were not able to identify causative mutations in all strains. Colistin-resistant mutants showed little difference in growth rate, and virulence in G. mellonella, although there were strain-to-strain differences. Conclusions. Stable colistin resistance may be acquired with no loss of fitness in these species. However, only select strains were able to adapt suggesting that acquisition of colistin resistance is dependent upon individual strain characteristics.


2020 ◽  
Vol 69 (7) ◽  
pp. 949-959
Author(s):  
Yudong Liu ◽  
Qi Wang ◽  
Chunjiang Zhao ◽  
Hongbin Chen ◽  
Henan Li ◽  
...  

Introduction. Increasing evidence demonstrates unfavourable outcomes in bloodstream infections (BSI) due to the carbapenem-resistant Acinetobacter baumannii complex (CRAB). Aim. To investigate the differences in risk factors, clinical characteristics and outcomes in patients with A. baumannii complex BSI stratified by carbapenem resistance, a prospective multi-center study was conducted. Methodology. Information was collected in a predefined form. A total of 317 cases was included for comparison between CRAB BSI vs. carbapenem-susceptible A. baumannii complex (CSAB) BSI. Among these cases, 229 cases were defined as CRAB BSI and 88 cases as CSAB BSI. Results. Univariable analysis showed that male gender, underlying neurologic disease, prior carbapenems exposure, intensive care unit (ICU) stay, presence of central venous catheter, endotracheal intubation, tracheotomy, Foley catheter, nasogastric intubation, lower respiratory tract infections and catheter-related infections were more prevalent in CRAB BSI. Only male gender, prior carbapenems exposure and presence of endotracheal intubation persisted as independent risk factors for acquiring CRAB BSI. Patients with CRAB BSI displayed unfavourable outcomes characterized by failure of pathogen clearance, continuous fever, disease aggravation and higher incidence of 30-day all-cause mortality. Multivariate analysis demonstrated carbapenem resistance as an independent risk factor for 30-day all-cause mortality. Conclusion. Our findings reveal the epidemiological differences between CRAB BSI and CSAB BSI in a Chinese cohort. Our data suggest that carbapenem resistance has a significant impact on mortality for patients with A. baumannii complex BSI, further strengthening the importance of active prevention and control strategies for the spread of CRAB in Chinese hospitals.


2021 ◽  
Vol 70 (12) ◽  
Author(s):  
Taalin R. Hoj ◽  
Bradley McNeely ◽  
Kylie Webber ◽  
Evelyn Welling ◽  
William G. Pitt ◽  
...  

Introduction. Antibiotic resistance, particularly in cases of sepsis, has emerged as a growing global public health concern and economic burden. Current methods of blood culture and antimicrobial susceptibility testing of agents involved in sepsis can take as long as 3–5 days. It is vital to rapidly identify which antimicrobials can be used to effectively treat sepsis cases on an individual basis. Here, we present a pentaplex, real-time PCR-based assay that can quickly identify the most common beta-lactamase genes ( Klebsiella pneumoniae carbapenemase (KPC); New Delhi metallo-beta-lactamase (NDM); cefotaximase-Munich (CTX-M); cephamycin AmpC beta-lactamases (CMY); and Oxacillinase-48 (OXA-48)) from pathogens derived directly from the blood of patients presenting with bacterial septicemia. Aim. To develop an assay which can rapidly identify the most common beta-lactamase genes in Carbapenem-resistant Enterobacteriaceae bacteria (CREs) from the United States. Hypothesis/Gap Statement. Septicemia caused by carbapenem-resistant bacteria has a death rate of 40–60 %. Rapid diagnosis of antibiotic susceptibility directly from bacteria in blood by identification of beta-lactamase genes will greatly improve survival rates. In this work, we develop an assay capable of concurrently identifying the five most common beta-lactamase and carbapenemase genes. Methodology. Primers and probes were created which can identify all subtypes of Klebsiella pneumoniae carbapenemase (KPC); New Delhi metallo-beta-lactamase (NDM); cefotaximase-Munich (CTX); cephamycin AmpC beta-lactamase (CMY); and oxacillinase-48 (OXA-48). The assay was validated using 13 isolates containing various PCR targets from the Centre for Disease Control Antimicrobial Resistance Isolate Bank Enterobacterales Carbapenemase Diversity Panel. Blood obtained from volunteers was spiked with CREs and bacteria were separated, lysed, and subjected to analysis via the pentaplex assay. Results. This pentaplex assay successfully identified beta-lactamase genes derived from bacteria separated from blood at concentrations of 4–8 c.f.u. ml−1. Conclusion. This assay will improve patient outcomes by supplying physicians with critical drug resistance information within 2 h of septicemia onset, allowing them to prescribe effective antimicrobials corresponding to the resistance gene(s) present in the pathogen. In addition, information supplied by this assay will lessen the inappropriate use of broad-spectrum antimicrobials and prevent the evolution of further antibiotic resistance.


2019 ◽  
Vol 68 (9) ◽  
pp. 1330-1340 ◽  
Author(s):  
Regiane C. B. Dias ◽  
Melissa A. Vieira ◽  
Ana C. Moro ◽  
Danilo F. M. Ribolli ◽  
Aydir C. M. Monteiro ◽  
...  

Purpose. This study aimed to characterize 27 Escherichia coli isolates obtained from peritoneal dialysis (PD)-related peritonitis that occurred at the University Hospital of Botucatu Medical School, Brazil, between 1997 and 2015. Methodology. These isolates were characterized regarding the occurrence of 22 virulence factor-encoding genes, antimicrobial resistance and biofilm production. We then evaluated whether these factors influenced the clinical outcome. Results. Over an 18-year period, 726 episodes of PD-related peritonitis were diagnosed, with 27 of them (3.7 %) being due to E. coli . The majority of the isolates were classified in phylogroups B1 (33.3 %), B2 (30.0 %) or F (18.0 %). fimH (100.0 %), ompT (66.7 %) and irp2 (51.9 %) were the most prevalent genes, while papA, papC, iha, sat, irp2, iucD, ireA, ibe10, ompT and kpsMTII were significantly more prevalent among isolates belonging to phylogroups B2 and F (P<0.05). Non-susceptibility to quinolones was detected in six isolates, which harboured chromosomal and/or plasmid-mediated quinolone resistance determinants, while two CTX-M extended-spectrum β-lactamase-producing E. coli were identified. Virulence factor-encoding genes (alone or in combination) and antimicrobial resistance were not associated with non-resolution outcomes. However, there was a trend for the ability to produce biofilm to be associated with treatment failure, although this association was not statistically significant. Conclusion. The E. coli isolates were heterogeneous in terms of the features investigated, and were susceptible to most of the antimicrobial drugs tested, despite the unsuccessful treatment observed in more than 50.0 % of the patients. Studies including more cases could help to clarify if biofilm production can influence the outcome in patients with PD-related peritonitis.


2021 ◽  
Author(s):  
To Nguyen Thi Nguyen ◽  
Phuong Luong Nha Nguyen ◽  
Ngan Thi Quynh Le ◽  
Lan Phu Huong Nguyen ◽  
Thuy Bich Duong ◽  
...  

The emergence of carbapenem resistance in Klebsiella pneumoniae represents a major global public health concern. Nosocomial outbreaks caused by multidrug-resistant K. pneumoniae are commonly reported to result in high morbidity and mortality due to limited treatment options. Between October 2019 and January 2020, two concurrent high-mortality nosocomial outbreaks occurred in a referral hospital in Ho Chi Minh City, Vietnam. We performed genome sequencing and phylogenetic analysis of eight K. pneumoniae isolates from infected patients and two environmental isolates for outbreak investigation. We identified two outbreaks caused by two distinct lineages of the international sequence type (ST) 16 clone, which displayed extensive drug resistance, including resistance to carbapenem and colistin. Carbapenem-resistant ST16 outbreak strains clustered tightly with previously described ST16 K. pneumoniae from other hospitals in Vietnam, suggesting local persistence and transmission of this particular clone in this setting. We found environmental isolates from a hospital bed and blood pressure cuff that were genetically linked to an outbreak case cluster, confirming the potential of high-touch surfaces as sources for nosocomial spread of K. pneumoniae . Further, we found colistin resistance caused by disruption of the mgrB gene by an ISL3-like element, and carbapenem resistance mediated by a transferable IncF/bla OXA-181 plasmid carrying the ISL3-like element. Our study highlights the importance of coordinated efforts between clinical and molecular microbiologists and infection control teams to rapidly identify, investigate and contain nosocomial outbreaks. Routine surveillance with advanced sequencing technology should be implemented to strengthen hospital infection control and prevention measures.


2021 ◽  
Vol 70 (7) ◽  
Author(s):  
Hsing-Yu Chen ◽  
Chuan-Chung Chuang ◽  
Yu-Ching Chou ◽  
Wei-Jane Hsu ◽  
I-Chieh Lin ◽  
...  

Introduction. Outbreaks of carbapenem-resistant A. baumannii and A. nosocomialis have occurred worldwide in healthcare settings. Rapid and reliable molecular typing of bacterial isolates is vital for the effective surveillance of institutional outbreaks. The Pan-PCR and OXA-PCR assays are two multiplex PCR-based assays for the molecular typing of Acinetobacter species. Gap statement. However, few studies have investigated the discriminatory power of two multiplex PCR assays in in the genotyping of Acinetobacter species. Aim. We aimed to evaluate the efficacies of the Pan-PCR and OXA-PCR assays for molecular typing of A. baumannii and A. nosocomialis . Methodology. A total of 105 carbapenem-resistant A. baumannii isolates (CRABs) and 93 carbapenem-resistant A. nosocomialis isolates (CRANs) obtained from blood cultures were used for molecular typing by the Pan-PCR and OXA-PCR assays and two multilocus sequence typing (MLST) schemes. Results. The isolates were individually divided into 12 and 21 different sequence types via the Pasteur and Oxford MLST schemes, respectively. Additionally, these isolates were distinguished into 18 different types by the Pan-PCR and OXA-PCR assays. The results of the Pan-PCR and OXA-PCR assays distinguished CRABs and CRANs with a sensitivity of 98.13 % and a specificity of 100 %. Conclusion. The Pan-PCR and OXA-PCR assays are promising alternative methods for rapid molecular typing of CRABs and CRANs in a routine laboratory setting.


Author(s):  
Wen Juan Yan ◽  
Nan Jing ◽  
Shan Mei Wang ◽  
Jun Hong Xu ◽  
You Hua Yuan ◽  
...  

Introduction. Carbapenem-resistant Enterobacteriaceae (CRE) have been responsible for nosocomial outbreaks worldwide and have become endemic in several countries. Hypothesis/Gap Statement. To better understand the epidemiological trends and characteristics of CRE in the Henan province. Aim. We assessed the molecular epidemiological characteristics of 305 CRE strains isolated from patients in 19 secondary or tertiary hospitals in ten areas of the Henan province in China. Methodology. A total of 305 CRE isolates were subjected to multiple tests, including in vitro antimicrobial susceptibility testing, PCR for carbapenemase genes bla KPC, bla NDM, bla IMP, bla VIM, bla OXA-48-like. Tigecycline-resistant genes ramR, oqxR, acrR, tetA, rpsJ, tetX, tetM, tetL were analysed in five tigecycline non-susceptible carbapenem-resistant Klebsiella pneumoniae isolates (TNSCRKP). Additionally, multilocus sequence typing (MLST) was performed for carbapenem-resistant K. pneumoniae (CRKP). Results. The most common CRE species were K. pneumoniae (234, 77 %), Escherichia coli (36, 12 %) and Enterobacter cloacae (13, 4 %). All strains exhibited multi-drug resistance. Overall, 97 % (295/305) and 97 % (297/305) of the isolates were susceptible to polymyxin B and tigecycline, respectively. A total of 89 % (271/305) of the CRE isolates were carbapenemase gene-positive, including 70 % bla KPC, 13 % bla NDM, 6 % bla IMP, and 1 % combined bla KPC/bla NDM genes. K. pneumoniae carbapenemase (KPC) was the predominant carbapenemase in K. pneumoniae (87 %), whereas NDM and IMP were frequent in E. coli (53 %) and E. cloacae (69 %), respectively. Mutations in the ramR, tetA, and rpsJ genes were detected in five TNSCRKP. Moreover, 15 unique sequence types were detected, with ST11 (74 %), ST15 (9 %) and ST2237 (5 %) being dominant among K. pneumoniae strains. Conclusion. A high proportion of CRE strains were carbapenemase-positive, and five carbapenem-resistant K. pneumonia isolates were tigecycline non-susceptible, indicating a need for the ongoing surveillance of CRE and effective measures for the prevention of CRE infections.


2020 ◽  
Vol 2 (8) ◽  
Author(s):  
Saranya Vijayakumar ◽  
Chand Wattal ◽  
Oberoi J.K. ◽  
Sanjay Bhattacharya ◽  
Karthick Vasudevan ◽  
...  

Carbapenem resistance in Acinetobacter baumannii is due to bla OXA-23, which is endemic in India. Recently, the sporadic presence of bla OXA-58 as well as the occurrence of dual carbapenemases were observed. The mobility as well as the dissemination of these resistance genes were mainly mediated by various mobile genetic elements. The present study was aimed at characterizing the genetic arrangement of bla OXA-23, bla NDM-1 and bla OXA-58 identified in two complete genomes of carbapenem-resistant A. baumannii (CRAB). Complete genomes obtained using a hybrid-assembly approach revealed the accurate arrangement of Tn2006 with bla OXA-23, ISAba125 with bla NDM and ISAba3 with bla OXA-58. In addition, the association of IntI1 integrase with the bla CARB-2 gene and several virulence factors required for type-IV pili assembly, motility and biofilm formation have been identified. The current study provided deeper insight into the complete characterization of insertion sequences and transposons associated with the carbapenem-resistant genes using short reads of IonTorrent PGM and long reads of MinIon in A. baumannii .


Author(s):  
Ying Chen ◽  
Li Fang ◽  
Yunxing Yang ◽  
Rushuang Yan ◽  
Ying Fu ◽  
...  

Klebsiella pneumoniae strains carrying OXA-48-like carbapenemases are increasingly prevalent across the globe. There is thus an urgent need to better understand the mechanisms that underpin the dissemination of bla OXA-48-like carbapenemases. To this end, four ertapenem-resistant K. pneumoniae isolates producing OXA-48-like carbapenemases were isolated from two patients. Genome sequencing revealed that one sequence type (ST) 17 isolate carried bla OXA-181, whilst three isolates from a single patient, two ST76 and one ST15, carried bla OXA-232. The 50514 bp bla OXA-181-harbouring plasmid, pOXA-181_YML0508, was X3-type with a conjugation frequency to Escherichia coli of 1.94×10−4 transconjugants per donor. The bla OXA-232 gene was located on a 6141 bp ColKP3-type plasmid, pOXA-232_WSD, that was identical in the ST76 and ST15 K. pneumoniae isolates. This plasmid could be transferred from K. pneumoniae to E. coli at low frequency, 8.13×10−6 transconjugants per donor. Comparative analysis revealed that the X3 plasmid acquired the bla OXA-48-like gene via IS3000-mediated co-integration of the ColKP3-type plasmid. Our study highlights how plasmid integration and rearrangements can contribute to the spread of bla OXA-48-like genes, which provides important clues for clinical prevention of the dissemination of K. pneumoniae strains carrying bla OXA-48-like carbapenemases.


Author(s):  
Huda Mahmoud ◽  
Liny Jose ◽  
Susan Eapen

A Gram-stain-negative, rod and rod-curved shaped motile bacterium designated strain S25T was obtained from benthic sediment collected near the Kubbar Island coral reefs south of Kuwait. Phenotypic analysis revealed that strain S25T was slightly halophilic, mesophilic and facultative anaerobic, fermenting d-glucose, d-ribose, d-mannose, d-mannitol, maltose, fructose, gentiobiose, cellobiose, melibiose, trehalose and sucrose. It was positive for oxidase and indole production and negative for arginine dihydrolase and lysine and ornithine decarboxylases. It contained C16 : 1  ω7c/C16 : 1  ω6c (summed feature 3), C18 : 1 ω7c (summed feature 8) and C16 : 0 as the major fatty acids. Strain S25T grew optimally at 30 °C and pH 8 in the presence of 3 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA sequences revealed that strain S25T is related to species of the genus Grimontia , having 99.15 % similarity to ‘Grimontia indica’ AK16T, 99.08 % to Grimontia celer 96-237T and 98.66 % to Grimontia marina IMCC 5001T. The DNA G+C content was 48.8 mol% and the full genome analysis for the strain S25T showed that the bacterium has a genome size of 5 158 621 bp and contains 4730 predicted protein-encoding genes. The average nucleotide identity values between the S25T genome and the genomes of its nearest matches ranged between 81.39 and 94.16 %. The strain was distinguishable from the phylogenetically related genera through differences in several phenotypic properties. On the basis of the phenotypic, phylogenetic and genetic data, strain S25T represents a novel species in the genus Grimontia , for which the name Grimontia sedimenti sp. nov. is proposed. The type strain of Grimontia sedimenti is S25T (=DSM 28878T=LMG 28315T).


Sign in / Sign up

Export Citation Format

Share Document