scholarly journals Emerging carbapenem-resistant Klebsiella pneumoniae sequence type 16 causing multiple outbreaks in a tertiary hospital in southern Vietnam

2021 ◽  
Author(s):  
To Nguyen Thi Nguyen ◽  
Phuong Luong Nha Nguyen ◽  
Ngan Thi Quynh Le ◽  
Lan Phu Huong Nguyen ◽  
Thuy Bich Duong ◽  
...  

The emergence of carbapenem resistance in Klebsiella pneumoniae represents a major global public health concern. Nosocomial outbreaks caused by multidrug-resistant K. pneumoniae are commonly reported to result in high morbidity and mortality due to limited treatment options. Between October 2019 and January 2020, two concurrent high-mortality nosocomial outbreaks occurred in a referral hospital in Ho Chi Minh City, Vietnam. We performed genome sequencing and phylogenetic analysis of eight K. pneumoniae isolates from infected patients and two environmental isolates for outbreak investigation. We identified two outbreaks caused by two distinct lineages of the international sequence type (ST) 16 clone, which displayed extensive drug resistance, including resistance to carbapenem and colistin. Carbapenem-resistant ST16 outbreak strains clustered tightly with previously described ST16 K. pneumoniae from other hospitals in Vietnam, suggesting local persistence and transmission of this particular clone in this setting. We found environmental isolates from a hospital bed and blood pressure cuff that were genetically linked to an outbreak case cluster, confirming the potential of high-touch surfaces as sources for nosocomial spread of K. pneumoniae . Further, we found colistin resistance caused by disruption of the mgrB gene by an ISL3-like element, and carbapenem resistance mediated by a transferable IncF/bla OXA-181 plasmid carrying the ISL3-like element. Our study highlights the importance of coordinated efforts between clinical and molecular microbiologists and infection control teams to rapidly identify, investigate and contain nosocomial outbreaks. Routine surveillance with advanced sequencing technology should be implemented to strengthen hospital infection control and prevention measures.

Author(s):  
Ying Chen ◽  
Li Fang ◽  
Yunxing Yang ◽  
Rushuang Yan ◽  
Ying Fu ◽  
...  

Klebsiella pneumoniae strains carrying OXA-48-like carbapenemases are increasingly prevalent across the globe. There is thus an urgent need to better understand the mechanisms that underpin the dissemination of bla OXA-48-like carbapenemases. To this end, four ertapenem-resistant K. pneumoniae isolates producing OXA-48-like carbapenemases were isolated from two patients. Genome sequencing revealed that one sequence type (ST) 17 isolate carried bla OXA-181, whilst three isolates from a single patient, two ST76 and one ST15, carried bla OXA-232. The 50514 bp bla OXA-181-harbouring plasmid, pOXA-181_YML0508, was X3-type with a conjugation frequency to Escherichia coli of 1.94×10−4 transconjugants per donor. The bla OXA-232 gene was located on a 6141 bp ColKP3-type plasmid, pOXA-232_WSD, that was identical in the ST76 and ST15 K. pneumoniae isolates. This plasmid could be transferred from K. pneumoniae to E. coli at low frequency, 8.13×10−6 transconjugants per donor. Comparative analysis revealed that the X3 plasmid acquired the bla OXA-48-like gene via IS3000-mediated co-integration of the ColKP3-type plasmid. Our study highlights how plasmid integration and rearrangements can contribute to the spread of bla OXA-48-like genes, which provides important clues for clinical prevention of the dissemination of K. pneumoniae strains carrying bla OXA-48-like carbapenemases.


Author(s):  
Luís Guilherme de Araújo Longo ◽  
Herrison Fontana ◽  
Viviane Santos de Sousa ◽  
Natalia Chilinque Zambão da Silva ◽  
Ianick Souto Martins ◽  
...  

Klebsiella pneumoniae causes a diversity of infections in both healthcare and community settings. This pathogen is showing an increased ability to accumulate antimicrobial resistance and virulence genes, making it a public health concern. Here we describe the whole-genome sequence characteristics of an ST15 colistin-resistant K. pneumoniae isolate obtained from a blood culture of a 79-year-old female patient admitted to a university hospital in Brazil. Kp14U04 was resistant to most clinically useful antimicrobial agents, remaining susceptible only to aminoglycosides and fosfomycin. The colistin resistance in this isolate was due to a ~1.3 kb deletion containing four genes, namely mgrB, yebO, yobH and the transcriptional regulator kdgR. The study isolate presented a variety of antimicrobial resistance genes, including the carbapenemase-encoding gene bla KPC-2, the extended-spectrum beta-lactamase (ESBL)-encoding gene bla SHV-28 and the beta-lactamase-encoding gene bla OXA-1. Additionally, Kp14U04 harboured a multiple stress resistance protein, efflux systems and regulators, heavy metal resistance and virulence genes, plasmids, prophage-related sequences and genomic islands. These features revealed the high potential of this isolate to resist antimicrobial therapy, survive in adverse environments, cause infections and overcome host defence mechanisms.


2019 ◽  
Vol 63 (9) ◽  
Author(s):  
Ning Dong ◽  
Qiaoling Sun ◽  
Yonglu Huang ◽  
Lingbin Shu ◽  
Lianwei Ye ◽  
...  

ABSTRACT We report the identification of a carbapenem-resistant, hypervirulent Klebsiella pneumoniae (hvKp) strain which produced the carbapenemase VIM-1. Genomic analysis showed that the strain belonged to sequence type ST23 and serotype K1, a major hvKp clone, and harbored three resistance-encoding plasmids. Among them, a blaVIM-1-bearing plasmid was found to possess a mosaic structure presumably generated by multiple gene mobilization events. This finding indicates that hvKp actively acquires mobile resistance-encoding elements, facilitating simultaneous expression of hypervirulence and carbapenem-resistance.


2021 ◽  
Vol 70 (12) ◽  
Author(s):  
Taalin R. Hoj ◽  
Bradley McNeely ◽  
Kylie Webber ◽  
Evelyn Welling ◽  
William G. Pitt ◽  
...  

Introduction. Antibiotic resistance, particularly in cases of sepsis, has emerged as a growing global public health concern and economic burden. Current methods of blood culture and antimicrobial susceptibility testing of agents involved in sepsis can take as long as 3–5 days. It is vital to rapidly identify which antimicrobials can be used to effectively treat sepsis cases on an individual basis. Here, we present a pentaplex, real-time PCR-based assay that can quickly identify the most common beta-lactamase genes ( Klebsiella pneumoniae carbapenemase (KPC); New Delhi metallo-beta-lactamase (NDM); cefotaximase-Munich (CTX-M); cephamycin AmpC beta-lactamases (CMY); and Oxacillinase-48 (OXA-48)) from pathogens derived directly from the blood of patients presenting with bacterial septicemia. Aim. To develop an assay which can rapidly identify the most common beta-lactamase genes in Carbapenem-resistant Enterobacteriaceae bacteria (CREs) from the United States. Hypothesis/Gap Statement. Septicemia caused by carbapenem-resistant bacteria has a death rate of 40–60 %. Rapid diagnosis of antibiotic susceptibility directly from bacteria in blood by identification of beta-lactamase genes will greatly improve survival rates. In this work, we develop an assay capable of concurrently identifying the five most common beta-lactamase and carbapenemase genes. Methodology. Primers and probes were created which can identify all subtypes of Klebsiella pneumoniae carbapenemase (KPC); New Delhi metallo-beta-lactamase (NDM); cefotaximase-Munich (CTX); cephamycin AmpC beta-lactamase (CMY); and oxacillinase-48 (OXA-48). The assay was validated using 13 isolates containing various PCR targets from the Centre for Disease Control Antimicrobial Resistance Isolate Bank Enterobacterales Carbapenemase Diversity Panel. Blood obtained from volunteers was spiked with CREs and bacteria were separated, lysed, and subjected to analysis via the pentaplex assay. Results. This pentaplex assay successfully identified beta-lactamase genes derived from bacteria separated from blood at concentrations of 4–8 c.f.u. ml−1. Conclusion. This assay will improve patient outcomes by supplying physicians with critical drug resistance information within 2 h of septicemia onset, allowing them to prescribe effective antimicrobials corresponding to the resistance gene(s) present in the pathogen. In addition, information supplied by this assay will lessen the inappropriate use of broad-spectrum antimicrobials and prevent the evolution of further antibiotic resistance.


2020 ◽  
Vol 2 (12) ◽  
Author(s):  
Geoffrey Foster ◽  
Manal AbuOun ◽  
Romain Pizzi ◽  
Bryn Tennant ◽  
Margaret McCall ◽  
...  

The ST307 multidrug-resistant CTX-M-15-producing Klebsiella pneumoniae is an emerging pathogen, which has become disseminated worldwide in humans but is rarely reported from other reservoirs. We report the first isolation of K. pneumoniae from an animal in Europe and also from a reptile, a captive tortoise, whose death it probably caused. Detection of this clone from an animal adds to evidence of niche expansion in non-human environments, where it may amplify, recycle and become of greater public health concern.


2020 ◽  
Vol 2 (8) ◽  
Author(s):  
Saranya Vijayakumar ◽  
Chand Wattal ◽  
Oberoi J.K. ◽  
Sanjay Bhattacharya ◽  
Karthick Vasudevan ◽  
...  

Carbapenem resistance in Acinetobacter baumannii is due to bla OXA-23, which is endemic in India. Recently, the sporadic presence of bla OXA-58 as well as the occurrence of dual carbapenemases were observed. The mobility as well as the dissemination of these resistance genes were mainly mediated by various mobile genetic elements. The present study was aimed at characterizing the genetic arrangement of bla OXA-23, bla NDM-1 and bla OXA-58 identified in two complete genomes of carbapenem-resistant A. baumannii (CRAB). Complete genomes obtained using a hybrid-assembly approach revealed the accurate arrangement of Tn2006 with bla OXA-23, ISAba125 with bla NDM and ISAba3 with bla OXA-58. In addition, the association of IntI1 integrase with the bla CARB-2 gene and several virulence factors required for type-IV pili assembly, motility and biofilm formation have been identified. The current study provided deeper insight into the complete characterization of insertion sequences and transposons associated with the carbapenem-resistant genes using short reads of IonTorrent PGM and long reads of MinIon in A. baumannii .


2017 ◽  
Vol 62 (3) ◽  
Author(s):  
Marla J. Giddins ◽  
Nenad Macesic ◽  
Medini K. Annavajhala ◽  
Stephania Stump ◽  
Sabrina Khan ◽  
...  

ABSTRACT Ceftazidime-avibactam (CAZ-AVI) is a promising novel treatment for infections caused by carbapenem-resistant Enterobacteriaceae (CRE). Despite improved treatment outcomes compared to those achieved with aminoglycoside- and colistin-based regimens, the rapid evolution of CAZ-AVI resistance during treatment has previously been reported in Klebsiella pneumoniae sequence type 258 (ST258) bla KPC-3 -harboring isolates. Here, we report the stepwise evolution and isolation of two phenotypically distinct CAZ-AVI-resistant Klebsiella pneumoniae isolates from a patient with pancreatitis. All susceptible ( n = 3) and resistant ( n = 5) isolates were of the ST307 clonal background, a rapidly emerging clone. Taking advantage of short-read Illumina and long-read Oxford Nanopore sequencing and full-length assembly of the core chromosome and plasmids, we demonstrate that CAZ-AVI resistance first occurred through a 532G → T bla KPC-2 point mutation in bla KPC-2 (D179Y protein substitution) following only 12 days of CAZ-AVI exposure. While subsequent isolates exhibited substantially decreased meropenem (MEM) MICs (≤2 μg/ml), later cultures demonstrated a second CAZ-AVI resistance phenotype with a lower CAZ-AVI MIC (12 μg/ml) but also MEM resistance (MIC > 128 μg/ml). These CAZ-AVI- and MEM-resistant isolates showed evidence of multiple genomic adaptations, mainly through insertions and deletions. This included amplification and transposition of wild-type bla KPC-2 into a novel plasmid, an IS 1 insertion upstream of ompK36 , and disruption of the rfb gene locus in these isolates. Our findings illustrate the potential of CAZ-AVI resistance to emerge in non- K. pneumoniae ST258 clonal backgrounds and alternative bla KPC variants. These results raise concerns about the strong selective pressures incurred by novel carbapenemase inhibitors, such as avibactam, on isolates previously considered invulnerable to CAZ-AVI resistance. There is an urgent need to further characterize non-KPC-mediated modes of carbapenem resistance and the intrinsic bacterial factors that facilitate the rapid emergence of resistance during treatment.


2021 ◽  
Vol 70 (5) ◽  
Author(s):  
Sajad Aslani ◽  
Somayeh Kiaei ◽  
Ali Afgar ◽  
José Rubén Morones-Ramírez ◽  
Hossein Alishah Aratboni ◽  
...  

Introduction. New Delhi metallo-β-lactamase (NDM)-producing Klebsiella pneumoniae has become a serious global health concern. Hypothesis/Gap Statement. Due to the high genetic diversity among NDM-positive K. pneumoniae, we need further surveillance and studies to better understand the relationships between them. In addition, the coexistence of several plasmid replicon types in NDM-positive K. pneumoniae may affect the copy number of bla NDM, the MIC level to antibiotics, as well as increasing the chance of horizontal gene transfer. Aim. The aim of this study was to determine incompatible plasmid groups and copy numbers of bla NDM, and to investigate the genetic relationship of 37 NDM-positive K. pneumoniae in Kerman, Iran. Methodology. The bla NDM-1 gene was detected and confirmed by PCR-sequencing. The plasmid replicon types were determined by PCR-based replicon typing (PBRT) and the copy number of bla NDM-1 was determined by quantitaive real time-PCR (qPCR). Random amplified polymorphic DNA (RAPD)-PCR typing was used to detect genetic relationships between the strains. Results. In this study, 10 different replicon types, including Frep [n=25 (67.5 %)], FIIAs [n=11 (29.7 %)], FIA [n=5 (13.5 %)], FIB [n=3 (8.1 %)], I1-Iγ [n=2 (5.4 %)], L/M [n=7 (18.9 %)], A/C [n=7 (18.9 %)], Y [n=3 (8.1 %)], P [n=1 (2.7 %)] and FIC [n=1 (2.7 %)] were reported. The copy numbers of the bla NDM-1 gene varied from 30.00 to 5.0×106 and no statistically significant correlation was observed between a rise of the MIC to imipenem and the copy numbers of bla NDM-1 (P>0.05). According to RAPD typing results, 35 strains were divided into five clusters, while two strains were non-typeable. Conclusion. The spread of NDM-1-producing K. pneumoniae strains that carry several plasmid replicon types increases the chance of horizontal transfer of antibiotic resistance genes in hospital settings. In this study, 10 different replicon types were identified. We could not find any relationship between the increase of MIC levels to imipenem and the copy numbers of bla NDM-1. Therefore, due to the identification of different replicon types in this study, the type and genetic characteristics of bla NDM-1-carrying plasmids, and other factors such as antibiotic selective pressure, probably affect the copy number of bla NDM-1 and change the MIC level to imipenem.


2021 ◽  
Vol 70 (12) ◽  
Author(s):  
Haley J. Appaneal ◽  
Emily O’Neill ◽  
Vrishali V. Lopes ◽  
Kerry L. LaPlante ◽  
Aisling R. Caffrey

Introduction. Acinetobacter baumannii is a top-priority pathogen of the World Health Organization (WHO) and the Centers for Disease Control (CDC) due to antibiotic resistance. Gap Statement. Trends in A. baumannii resistance rates that include community isolates are unknown. Aim. Identify trends in A. baumannii resistance rates across the Veterans Affairs (VA) Healthcare System, including isolates from patients treated in hospitals, long-term care facilities and outpatient clinics nationally. Methodology. We included A. baumannii clinical cultures collected from VA patients from 2010 to 2018. Cultures were categorized by location: VA medical centers (VAMCs), long-term care (LTC) units [community living centers (CLCs)], or outpatient. We assessed carbapenem resistance, multidrug resistance (MDR) and extensive drug resistance (XDR). Time trends were assessed with Joinpoint regression. Results. We identified 19 376 A . baumannii cultures (53% VAMCs, 4% CLCs, 43% outpatient). Respiratory cultures were the most common source of carbapenem-resistant (43 %), multidrug-resistant (49 %) and extensively drug-resistant (21 %) isolates. Over the study period, the number of A. baumannii cultures decreased significantly in VAMCs (11.9% per year). In 2018, carbapenem resistance was seen in 28% of VAMC isolates and 36% of CLC isolates, but only 6% of outpatient isolates, while MDR was found in 31% of VAMC isolates and 36% of CLC isolates, but only 8 % of outpatient isolates. Carbapenem-resistant, multidrug-resistant and extensively drug-resistant A. baumannii isolates decreased significantly in VAMCs and outpatient clinics over time (VAMCs: by 4.9, 7.2 and 6.9%; outpatient: by 11.3, 10.5 and 10.2% per year). Resistant phenotypes remained stable in CLCs. Conclusion. In the VA nationally, the prevalence of A. baumannii is decreasing, as is resistance. Carbapenem-resistant and multidrug-resistant A. baumannii remain common in VAMCs and CLCs. The focus of infection control and antimicrobial stewardship efforts to prevent transmission of resistant A. baumannii should be in hospital and LTC settings.


2017 ◽  
Vol 61 (8) ◽  
Author(s):  
Astrid V. Cienfuegos-Gallet ◽  
Liang Chen ◽  
Barry N. Kreiswirth ◽  
J. Natalia Jiménez

ABSTRACT Here we describe the spread of colistin resistance in clinical isolates of carbapenem-resistant Klebsiella pneumoniae in Medellín, Colombia. Among 32 isolates collected between 2012 and 2014, 24 showed genetic alterations in mgrB. Nineteen isolates belonged to sequence type 512 (ST512) (or its single locus variant [SLV]) and harbored an 8.1-kb hsdMSR insertion corresponding to ISKpn25, indicating a clonal expansion of the resistant strain. The insertion region showed 100% identity to several plasmids, suggesting that the colistin resistance is mediated by chromosomal integration of plasmid DNA.


Sign in / Sign up

Export Citation Format

Share Document