scholarly journals Insights into the complete genomes of carbapenem-resistant Acinetobacter baumannii harbouring bla OXA-23, bla OXA-420 and bla NDM-1 genes using a hybrid-assembly approach

2020 ◽  
Vol 2 (8) ◽  
Author(s):  
Saranya Vijayakumar ◽  
Chand Wattal ◽  
Oberoi J.K. ◽  
Sanjay Bhattacharya ◽  
Karthick Vasudevan ◽  
...  

Carbapenem resistance in Acinetobacter baumannii is due to bla OXA-23, which is endemic in India. Recently, the sporadic presence of bla OXA-58 as well as the occurrence of dual carbapenemases were observed. The mobility as well as the dissemination of these resistance genes were mainly mediated by various mobile genetic elements. The present study was aimed at characterizing the genetic arrangement of bla OXA-23, bla NDM-1 and bla OXA-58 identified in two complete genomes of carbapenem-resistant A. baumannii (CRAB). Complete genomes obtained using a hybrid-assembly approach revealed the accurate arrangement of Tn2006 with bla OXA-23, ISAba125 with bla NDM and ISAba3 with bla OXA-58. In addition, the association of IntI1 integrase with the bla CARB-2 gene and several virulence factors required for type-IV pili assembly, motility and biofilm formation have been identified. The current study provided deeper insight into the complete characterization of insertion sequences and transposons associated with the carbapenem-resistant genes using short reads of IonTorrent PGM and long reads of MinIon in A. baumannii .

2020 ◽  
Vol 69 (7) ◽  
pp. 949-959
Author(s):  
Yudong Liu ◽  
Qi Wang ◽  
Chunjiang Zhao ◽  
Hongbin Chen ◽  
Henan Li ◽  
...  

Introduction. Increasing evidence demonstrates unfavourable outcomes in bloodstream infections (BSI) due to the carbapenem-resistant Acinetobacter baumannii complex (CRAB). Aim. To investigate the differences in risk factors, clinical characteristics and outcomes in patients with A. baumannii complex BSI stratified by carbapenem resistance, a prospective multi-center study was conducted. Methodology. Information was collected in a predefined form. A total of 317 cases was included for comparison between CRAB BSI vs. carbapenem-susceptible A. baumannii complex (CSAB) BSI. Among these cases, 229 cases were defined as CRAB BSI and 88 cases as CSAB BSI. Results. Univariable analysis showed that male gender, underlying neurologic disease, prior carbapenems exposure, intensive care unit (ICU) stay, presence of central venous catheter, endotracheal intubation, tracheotomy, Foley catheter, nasogastric intubation, lower respiratory tract infections and catheter-related infections were more prevalent in CRAB BSI. Only male gender, prior carbapenems exposure and presence of endotracheal intubation persisted as independent risk factors for acquiring CRAB BSI. Patients with CRAB BSI displayed unfavourable outcomes characterized by failure of pathogen clearance, continuous fever, disease aggravation and higher incidence of 30-day all-cause mortality. Multivariate analysis demonstrated carbapenem resistance as an independent risk factor for 30-day all-cause mortality. Conclusion. Our findings reveal the epidemiological differences between CRAB BSI and CSAB BSI in a Chinese cohort. Our data suggest that carbapenem resistance has a significant impact on mortality for patients with A. baumannii complex BSI, further strengthening the importance of active prevention and control strategies for the spread of CRAB in Chinese hospitals.


2021 ◽  
Author(s):  
To Nguyen Thi Nguyen ◽  
Phuong Luong Nha Nguyen ◽  
Ngan Thi Quynh Le ◽  
Lan Phu Huong Nguyen ◽  
Thuy Bich Duong ◽  
...  

The emergence of carbapenem resistance in Klebsiella pneumoniae represents a major global public health concern. Nosocomial outbreaks caused by multidrug-resistant K. pneumoniae are commonly reported to result in high morbidity and mortality due to limited treatment options. Between October 2019 and January 2020, two concurrent high-mortality nosocomial outbreaks occurred in a referral hospital in Ho Chi Minh City, Vietnam. We performed genome sequencing and phylogenetic analysis of eight K. pneumoniae isolates from infected patients and two environmental isolates for outbreak investigation. We identified two outbreaks caused by two distinct lineages of the international sequence type (ST) 16 clone, which displayed extensive drug resistance, including resistance to carbapenem and colistin. Carbapenem-resistant ST16 outbreak strains clustered tightly with previously described ST16 K. pneumoniae from other hospitals in Vietnam, suggesting local persistence and transmission of this particular clone in this setting. We found environmental isolates from a hospital bed and blood pressure cuff that were genetically linked to an outbreak case cluster, confirming the potential of high-touch surfaces as sources for nosocomial spread of K. pneumoniae . Further, we found colistin resistance caused by disruption of the mgrB gene by an ISL3-like element, and carbapenem resistance mediated by a transferable IncF/bla OXA-181 plasmid carrying the ISL3-like element. Our study highlights the importance of coordinated efforts between clinical and molecular microbiologists and infection control teams to rapidly identify, investigate and contain nosocomial outbreaks. Routine surveillance with advanced sequencing technology should be implemented to strengthen hospital infection control and prevention measures.


2021 ◽  
Vol 70 (3) ◽  
Author(s):  
Swati Sharma ◽  
Arghya Das ◽  
Tuhina Banerjee ◽  
Hiranmay Barman ◽  
Ghanshyam Yadav ◽  
...  

Introduction. Carbapenem resistance in Acinetobacter baumannii ( A. baumannii ) is an emerging global threat. Gap statement. The adaptation strategies of A. baumannii for this emergence as a nosocomial pathogen has been less studied. Aim. This prospective study analysed a sustained outbreak of carbapenem resistant Acinetobacter baumannii (CRAB) in the intensive care unit (ICU) with reference to antimicrobial resistance and virulence in the colonizing and pathogenic isolates under carbapenem stress. Results. The CRAB isolates from initial and sustained outbreak were found harbouring multiple carbapenemase genes. These genes included bla OXA-23 ,bla IMP, bla VIM and bla NDM. From NICU environment three phenotypically carbapenem susceptible isolates were found carrying bla OXA-23, bla IMP, bla VIM genes. Prior imipenem therapy was one of the risk factors (P=0.0016). The outbreak was polyclonal. Under imipenem stress, outbreak isolates showed no loss of carbapenemase genes against stress free conditions (23.7±1.33 days). Biofilm formation increased with imipenem concentration, with outbreak isolates producing highest biomass. While the pathogens showed a slow growth rate on imipenem exposure, the colonisers grew rapidly (P <0.0001). Methods. Sustained outbreak of CRAB was identified in the ICU (July 2015 to December 2017). Risk factors for acquisition of CRAB was studied. A. baumannii isolates were also collected from the environments of ICU and neonatal ICU (NICU) and blood cultures of septic neonates. Isolates were characterized based on antimicrobial susceptibility, genetic profile, integrons carriage and clonality. Biofilm formation and growth kinetics were studied under varying carbapenem stress. Conclusion. Intense carbapenem exposure in the ICU facilitates persistence of CRAB by several adaptations causing sustained outbreaks.


2021 ◽  
Vol 70 (12) ◽  
Author(s):  
Haley J. Appaneal ◽  
Emily O’Neill ◽  
Vrishali V. Lopes ◽  
Kerry L. LaPlante ◽  
Aisling R. Caffrey

Introduction. Acinetobacter baumannii is a top-priority pathogen of the World Health Organization (WHO) and the Centers for Disease Control (CDC) due to antibiotic resistance. Gap Statement. Trends in A. baumannii resistance rates that include community isolates are unknown. Aim. Identify trends in A. baumannii resistance rates across the Veterans Affairs (VA) Healthcare System, including isolates from patients treated in hospitals, long-term care facilities and outpatient clinics nationally. Methodology. We included A. baumannii clinical cultures collected from VA patients from 2010 to 2018. Cultures were categorized by location: VA medical centers (VAMCs), long-term care (LTC) units [community living centers (CLCs)], or outpatient. We assessed carbapenem resistance, multidrug resistance (MDR) and extensive drug resistance (XDR). Time trends were assessed with Joinpoint regression. Results. We identified 19 376 A . baumannii cultures (53% VAMCs, 4% CLCs, 43% outpatient). Respiratory cultures were the most common source of carbapenem-resistant (43 %), multidrug-resistant (49 %) and extensively drug-resistant (21 %) isolates. Over the study period, the number of A. baumannii cultures decreased significantly in VAMCs (11.9% per year). In 2018, carbapenem resistance was seen in 28% of VAMC isolates and 36% of CLC isolates, but only 6% of outpatient isolates, while MDR was found in 31% of VAMC isolates and 36% of CLC isolates, but only 8 % of outpatient isolates. Carbapenem-resistant, multidrug-resistant and extensively drug-resistant A. baumannii isolates decreased significantly in VAMCs and outpatient clinics over time (VAMCs: by 4.9, 7.2 and 6.9%; outpatient: by 11.3, 10.5 and 10.2% per year). Resistant phenotypes remained stable in CLCs. Conclusion. In the VA nationally, the prevalence of A. baumannii is decreasing, as is resistance. Carbapenem-resistant and multidrug-resistant A. baumannii remain common in VAMCs and CLCs. The focus of infection control and antimicrobial stewardship efforts to prevent transmission of resistant A. baumannii should be in hospital and LTC settings.


2020 ◽  
Vol 69 (4) ◽  
pp. 521-529 ◽  
Author(s):  
Matthew E. Wand ◽  
J. Mark Sutton

Introduction. Colistin is a last resort antibiotic for treating infections caused by carbapenem-resistant isolates. Mechanisms of resistance to colistin have been widely described in Klebsiella pneumoniae and Escherichia coli but have yet to be characterized in Citrobacter and Enterobacter species. Aim. To identify the causative mutations leading to generation of colistin resistance in Citrobacter and Enterobacter spp. Methodology. Colistin resistance was generated by culturing in increasing concentrations of colistin or by direct culture in a lethal (above MIC) concentration. Whole-genome sequencing was used to identify mutations. Fitness of resistant strains was determined by changes in growth rate, and virulence in Galleria mellonella. Results. We were able to generate colistin resistance upon exposure to sub-MIC levels of colistin, in several but not all strains of Citrobacter and Enterobacter resulting in a 16-fold increase in colistin MIC values for both species. The same individual strains also developed resistance to colistin after a single exposure at 10× MIC, with a similar increase in MIC. Genetic analysis revealed that this increased resistance was attributed to mutations in PmrB for Citrobacter and PhoP in Enterobacter , although we were not able to identify causative mutations in all strains. Colistin-resistant mutants showed little difference in growth rate, and virulence in G. mellonella, although there were strain-to-strain differences. Conclusions. Stable colistin resistance may be acquired with no loss of fitness in these species. However, only select strains were able to adapt suggesting that acquisition of colistin resistance is dependent upon individual strain characteristics.


mSphere ◽  
2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Masoumeh Douraghi ◽  
Johanna J. Kenyon ◽  
Parisa Aris ◽  
Mahla Asadian ◽  
Sedighe Ghourchian ◽  
...  

ABSTRACT The worldwide distribution of carbapenem-resistant Acinetobacter baumannii (CRAB) has become a global concern, particularly in countries where antibiotic prescription is not tightly regulated. However, knowledge of the genomic aspects of CRAB from many parts of the world is still limited. Here, 50 carbapenem-resistant A. baumannii isolates recovered at a single hospital in Tehran, Iran, during several outbreaks in 2012 and 2013 were found to be resistant to multiple antibiotics. They were examined using PCR mapping and multilocus sequence typing (MLST). All Iranian strains belonged to sequence type 328 in the Institut Pasteur MLST scheme (ST328IP), a single-locus variant of ST81IP, and all Iranian strains contained two carbapenem resistance genes, oxa23 and oxa24. The oxa23 gene is in the transposon Tn2006 in AbaR4, which interrupts the chromosomal comM gene. Phylogenetic analysis using whole-genome sequence (WGS) data for 9 isolates showed that they belonged to the same clade, designated the ST81/ST328 clade, within lineage 2 of global clone 1 (GC1). However, there were two groups that included either KL13 or KL18 at the K locus (KL) for capsular polysaccharide synthesis and either a tet39 or an aadB resistance gene, respectively. The genetic context of the resistance genes was determined, and the oxa24 (OXA-72 variant) and tet39 (tetracycline resistance) genes were each in a pdif module in different plasmids. The aadB gene cassette (which encodes gentamicin, kanamycin, and tobramycin resistance) was harbored by pRAY*, and the aphA6 gene (which encodes amikacin resistance) and sul2 gene (which encodes sulfamethoxazole resistance) were each harbored by a different plasmid. The sequences obtained here will underpin future studies of GC1 CRAB strains from the Middle East region. IMPORTANCE Carbapenem-resistant Acinetobacter baumannii strains are among the most critical antibiotic-resistant bacteria causing hospital-acquired infections and treatment failures. The global spread of two clones has been responsible for the bulk of the resistance, in particular, carbapenem resistance. However, there is a substantial gap in our knowledge of which clones and which specific lineages within each clone are circulating in many parts of the world, including Africa and the Middle East region. This is the first genomic analysis of carbapenem-resistant A. baumannii strains from Iran. All the isolates, from a single hospital, belonged to lineage 2 of global clone 1 (GC1) but fell into two groups distinguished by genes in the locus for capsule biosynthesis. The analysis suggests a potential origin of multiply antibiotic-resistant lineage 2 in the Middle East region and highlights the ongoing evolution of carbapenem-resistant GC1 A. baumannii strains. It will enhance future studies on the local and global GC1 population structure.


2021 ◽  
Vol 70 (12) ◽  
Author(s):  
Taalin R. Hoj ◽  
Bradley McNeely ◽  
Kylie Webber ◽  
Evelyn Welling ◽  
William G. Pitt ◽  
...  

Introduction. Antibiotic resistance, particularly in cases of sepsis, has emerged as a growing global public health concern and economic burden. Current methods of blood culture and antimicrobial susceptibility testing of agents involved in sepsis can take as long as 3–5 days. It is vital to rapidly identify which antimicrobials can be used to effectively treat sepsis cases on an individual basis. Here, we present a pentaplex, real-time PCR-based assay that can quickly identify the most common beta-lactamase genes ( Klebsiella pneumoniae carbapenemase (KPC); New Delhi metallo-beta-lactamase (NDM); cefotaximase-Munich (CTX-M); cephamycin AmpC beta-lactamases (CMY); and Oxacillinase-48 (OXA-48)) from pathogens derived directly from the blood of patients presenting with bacterial septicemia. Aim. To develop an assay which can rapidly identify the most common beta-lactamase genes in Carbapenem-resistant Enterobacteriaceae bacteria (CREs) from the United States. Hypothesis/Gap Statement. Septicemia caused by carbapenem-resistant bacteria has a death rate of 40–60 %. Rapid diagnosis of antibiotic susceptibility directly from bacteria in blood by identification of beta-lactamase genes will greatly improve survival rates. In this work, we develop an assay capable of concurrently identifying the five most common beta-lactamase and carbapenemase genes. Methodology. Primers and probes were created which can identify all subtypes of Klebsiella pneumoniae carbapenemase (KPC); New Delhi metallo-beta-lactamase (NDM); cefotaximase-Munich (CTX); cephamycin AmpC beta-lactamase (CMY); and oxacillinase-48 (OXA-48). The assay was validated using 13 isolates containing various PCR targets from the Centre for Disease Control Antimicrobial Resistance Isolate Bank Enterobacterales Carbapenemase Diversity Panel. Blood obtained from volunteers was spiked with CREs and bacteria were separated, lysed, and subjected to analysis via the pentaplex assay. Results. This pentaplex assay successfully identified beta-lactamase genes derived from bacteria separated from blood at concentrations of 4–8 c.f.u. ml−1. Conclusion. This assay will improve patient outcomes by supplying physicians with critical drug resistance information within 2 h of septicemia onset, allowing them to prescribe effective antimicrobials corresponding to the resistance gene(s) present in the pathogen. In addition, information supplied by this assay will lessen the inappropriate use of broad-spectrum antimicrobials and prevent the evolution of further antibiotic resistance.


2020 ◽  
Vol 69 (8) ◽  
pp. 1062-1078
Author(s):  
Balajee Ramachandran ◽  
Jeyaraman Jeyakanthan ◽  
Bruno S. Lopes

Introduction. Acinetobacter baumannii is a critical priority pathogen listed by the World Health Organization due to increasing levels of resistance to carbapenem classes of antibiotics. It causes wound and other nosocomial infections, which can be life-threatening. Hence, there is an urgent need for the development of new classes of antibiotics. Aim. To study the interaction of carabapenems with class D beta-lactamases (oxacillinases) and analyse drug resistance by studying enzyme–substrate complexes using modelling approaches as a means of establishing correlations with the phenotypic data. Methodology. The three-dimensional structures of carbapenems (doripenem, ertapenem, imipenem and meropenem) were obtained from DrugBank and screened against class D beta-lactamases. Further, the study was extended with their variants. The variants’ structure was homology-modelled using the Schrödinger Prime module (Schrödinger LLC, NY, USA). Results. The first discovered intrinsic beta-lactamase of Acinetobacter baumannii , OXA-51, had a binding energy value of −40.984 kcal mol−1, whereas other OXA-51 variants, such as OXA-64, OXA-110 and OXA-111, have values of −60.638, –66.756 and −67.751 kcal mol−1, respectively. The free energy values of OXA-51 variants produced better results than those of other groups. Conclusions. Imipenem and meropenem showed MIC values of 2 and 8 µg ml−1, respectively against OXA-51 in earlier studies, indicating that these are the most effective drugs for treatment of A. baumannii infection. According to our results, OXA-51 is an active enzyme that shows better interactions and is capable of hydrolyzing carbapenems. When correlating the hydrogen-bonding interaction with MIC values, the predicted results are in good agreement and might provide initial insights into performing similar studies related to OXA variants or other antibiotic–enzyme-based studies.


2020 ◽  
Author(s):  
Arun Gonzales Decano ◽  
Nghia Tran ◽  
Hawriya Al-Foori ◽  
Buthaina Al-Awadi ◽  
Leigh Campbell ◽  
...  

The human gut microbiome includes beneficial, commensal and pathogenic bacteria that possess antimicrobial resistance (AMR) genes and exchange these predominantly through conjugative plasmids. Escherichia coli is a significant component of the gastrointestinal microbiome and is typically non-pathogenic in this niche. In contrast, extra-intestinal pathogenic E. coli (ExPEC) including ST131 may occupy other environments like the urinary tract or bloodstream where they express genes enabling AMR and host cell adhesion like type 1 fimbriae. The extent to which commensal E. coli and uropathogenic ExPEC ST131 share AMR genes remains understudied at a genomic level, and we examined this here using a preterm infant resistome. We found that individual ST131 had small differences in AMR gene content relative to a larger shared resistome. Comparisons with a range of plasmids common in ST131 showed that AMR gene composition was driven by conjugation, recombination and mobile genetic elements. Plasmid pEK499 had extended regions in most ST131 Clade C isolates, and it had evidence of a co-evolutionary signal based on protein-level interactions with chromosomal gene products, as did pEK204 that had a type IV fimbrial pil operon. ST131 possessed extensive diversity of selective type 1, type IV, P and F17-like fimbriae genes that was highest in subclade C2. The structure and composition of AMR genes, plasmids and fimbriae vary widely in ST131 Clade C and this may mediate pathogenicity and infection outcomes.


2020 ◽  
Author(s):  
Jo Hendrix ◽  
L. Elaine Epperson ◽  
David Durbin ◽  
Jennifer R. Honda ◽  
Michael Strong

Mycobacterium kubicae is 1 of nearly 200 species of nontuberculous mycobacteria (NTM), environmental micro-organisms that in some situations can infect humans and cause severe lung, skin and soft tissue infections. Although numerous studies have investigated the genetic variation among prevalent clinical NTM species, including Mycobacterium abscessus and Mycobacterium avium , many of the less common but clinically relevant NTM species, including M. kubicae , still lack complete genomes to serve as a comparative reference. Well-characterized representative genomes for each NTM species are important both for investigating the pathogenic potential of NTM, as well as for use in diagnostic methods, even for species that less frequently cause human disease. Here, we report the complete genomes of two M. kubicae strains, isolated from two unrelated patients. Hybrid short-read and long-read sequencing and assembly, using sequence reads from Illumina and Oxford Nanopore Technologies platforms, were utilized to resolve the chromosome and plasmid sequences of each isolate. The genome of NJH_MKUB1 had 5135 coding sequences (CDSs), a circular chromosome of length 5.3 Mb and two plasmids. The genome of NJH_MKUB2 had 5957 CDSs, a circular chromosome of 6.0 Mb and five plasmids. We compared our completed genomic assemblies to four recently released draft genomes of M. kubicae in order to better understand intraspecies genomic conservation and variability. We also identified genes implicated in drug resistance, virulence and persistence in the M. kubicae chromosome and plasmids. Virulence factors encoded in the genome and in the plasmids of M. kubicae provide a foundation for investigating how opportunistic environmental NTM may cause disease.


Sign in / Sign up

Export Citation Format

Share Document