scholarly journals Successive Emergence of Ceftazidime-Avibactam Resistance through Distinct Genomic Adaptations in bla KPC-2 -Harboring Klebsiella pneumoniae Sequence Type 307 Isolates

2017 ◽  
Vol 62 (3) ◽  
Author(s):  
Marla J. Giddins ◽  
Nenad Macesic ◽  
Medini K. Annavajhala ◽  
Stephania Stump ◽  
Sabrina Khan ◽  
...  

ABSTRACT Ceftazidime-avibactam (CAZ-AVI) is a promising novel treatment for infections caused by carbapenem-resistant Enterobacteriaceae (CRE). Despite improved treatment outcomes compared to those achieved with aminoglycoside- and colistin-based regimens, the rapid evolution of CAZ-AVI resistance during treatment has previously been reported in Klebsiella pneumoniae sequence type 258 (ST258) bla KPC-3 -harboring isolates. Here, we report the stepwise evolution and isolation of two phenotypically distinct CAZ-AVI-resistant Klebsiella pneumoniae isolates from a patient with pancreatitis. All susceptible ( n = 3) and resistant ( n = 5) isolates were of the ST307 clonal background, a rapidly emerging clone. Taking advantage of short-read Illumina and long-read Oxford Nanopore sequencing and full-length assembly of the core chromosome and plasmids, we demonstrate that CAZ-AVI resistance first occurred through a 532G → T bla KPC-2 point mutation in bla KPC-2 (D179Y protein substitution) following only 12 days of CAZ-AVI exposure. While subsequent isolates exhibited substantially decreased meropenem (MEM) MICs (≤2 μg/ml), later cultures demonstrated a second CAZ-AVI resistance phenotype with a lower CAZ-AVI MIC (12 μg/ml) but also MEM resistance (MIC > 128 μg/ml). These CAZ-AVI- and MEM-resistant isolates showed evidence of multiple genomic adaptations, mainly through insertions and deletions. This included amplification and transposition of wild-type bla KPC-2 into a novel plasmid, an IS 1 insertion upstream of ompK36 , and disruption of the rfb gene locus in these isolates. Our findings illustrate the potential of CAZ-AVI resistance to emerge in non- K. pneumoniae ST258 clonal backgrounds and alternative bla KPC variants. These results raise concerns about the strong selective pressures incurred by novel carbapenemase inhibitors, such as avibactam, on isolates previously considered invulnerable to CAZ-AVI resistance. There is an urgent need to further characterize non-KPC-mediated modes of carbapenem resistance and the intrinsic bacterial factors that facilitate the rapid emergence of resistance during treatment.

2018 ◽  
Vol 62 (6) ◽  
Author(s):  
Lu Liu ◽  
Yu Feng ◽  
Haiyan Long ◽  
Alan McNally ◽  
Zhiyong Zong

ABSTRACT A carbapenem-resistant Klebsiella pneumoniae isolate was recovered from human blood. Its whole-genome sequence was obtained using Illumina and long-read MinION sequencing. The strain belongs to sequence type 273 (ST273), which was found recently and caused an outbreak in Southeast Asia. It has two carbapenemase genes, bla NDM-1 (carried by an ST7 IncN self-transmissible plasmid) and bla IMP-4 (located on a self-transmissible IncHI5 plasmid). Non-KPC-producing ST237 may represent a lineage of carbapenem-resistant K. pneumoniae , which warrants further monitoring.


2020 ◽  
Vol 64 (12) ◽  
Author(s):  
Ana M. Rada ◽  
Elsa De La Cadena ◽  
Carlos Agudelo ◽  
Cesar Capataz ◽  
Nataly Orozco ◽  
...  

ABSTRACT Carbapenem-resistant Enterobacterales (CRE) pose a significant threat to global public health. The most important mechanism for carbapenem resistance is the production of carbapenemases. Klebsiella pneumoniae carbapenemase (KPC) represents one of the main carbapenemases worldwide. Complex mechanisms of blaKPC dissemination have been reported in Colombia, a country with a high endemicity of carbapenem resistance. Here, we characterized the dynamics of dissemination of blaKPC gene among CRE infecting and colonizing patients in three hospitals localized in a highly endemic area of Colombia (2013 and 2015). We identified the genomic characteristics of KPC-producing Enterobacterales recovered from patients infected/colonized and reconstructed the dynamics of dissemination of blaKPC-2 using both short and long read sequencing. We found that spread of blaKPC-2 among Enterobacterales in the participating hospitals was due to intra- and interspecies horizontal gene transfer (HGT) mediated by promiscuous plasmids associated with transposable elements that was originated from a multispecies outbreak of KPC-producing Enterobacterales in a neonatal intensive care unit. The plasmids were detected in isolates recovered in other units within the same hospital and nearby hospitals. The gene “epidemic” was driven by IncN-pST15-type plasmids carrying a novel Tn4401b structure and non-Tn4401 elements (NTEKPC) in Klebsiella spp., Escherichia coli, Enterobacter spp., and Citrobacter spp. Of note, mcr-9 was found to coexist with blaKPC-2 in species of the Enterobacter cloacae complex. Our findings suggest that the main mechanism for dissemination of blaKPC-2 is HGT mediated by highly transferable plasmids among species of Enterobacterales in infected/colonized patients, presenting a major challenge for public health interventions in developing countries such as Colombia.


2019 ◽  
Author(s):  
Xiaoling Yu ◽  
Wen Zhang ◽  
Zhiping Zhao ◽  
Chengsong Ye ◽  
Shuyan Zhou ◽  
...  

Abstract The enhancing incidence of carbapenem-resistant Klebsiella pneumoniae (CRKP)-mediated infections in Mengchao Hepatobiliary Hospital of Fujian Medical University in 2017 promoted this investigation to study gene phenotypes and resistance genes of emergence regarding the CRKP strains. In current study, seven inpatients are enrolled in the hospital with complete treatments. The carbapenem-resistant K. pneumoniae whole genome is sequenced using MiSeq short-read and Oxford Nanopore long-read sequencing technology. Prophages are identified to assess genetic diversity within CRKP genomes. The investigation encompassed eight CRKP strains that collected from the patients enrolled as well as the environment, which illustrate that bla KPC-2 is responsible for phenotypic resistance in six CRKP strains that K . pneumoniae sequence type (ST-11) is inferred. The plasmid with IncR, ColRNAI and pMLST type with IncF[F33:A-:B-] co-exist in all ST-11 with KPC-2-producing CRKP strains. Along with carbapenemases, all K. pneumoniae strains harbor two or three extended spectrum β-lactamase (ESBL)-producing genes. F osA gene is detected amongst all the CRKP strains. The oqxA and oqxB expressions in CRKP strains may lead to carbapenem resistance since antimicrobials are expelled from pathogenic bacteria by efflux pump. The single nucleotide polymorphisms (SNP) markers are indicated and validated among all CRKP strains, providing valuable clues for distinguishing carbapenem-resistant strains from conventional K. pneumoniae .


2019 ◽  
Vol 63 (9) ◽  
Author(s):  
Ning Dong ◽  
Qiaoling Sun ◽  
Yonglu Huang ◽  
Lingbin Shu ◽  
Lianwei Ye ◽  
...  

ABSTRACT We report the identification of a carbapenem-resistant, hypervirulent Klebsiella pneumoniae (hvKp) strain which produced the carbapenemase VIM-1. Genomic analysis showed that the strain belonged to sequence type ST23 and serotype K1, a major hvKp clone, and harbored three resistance-encoding plasmids. Among them, a blaVIM-1-bearing plasmid was found to possess a mosaic structure presumably generated by multiple gene mobilization events. This finding indicates that hvKp actively acquires mobile resistance-encoding elements, facilitating simultaneous expression of hypervirulence and carbapenem-resistance.


2021 ◽  
Author(s):  
To Nguyen Thi Nguyen ◽  
Phuong Luong Nha Nguyen ◽  
Ngan Thi Quynh Le ◽  
Lan Phu Huong Nguyen ◽  
Thuy Bich Duong ◽  
...  

The emergence of carbapenem resistance in Klebsiella pneumoniae represents a major global public health concern. Nosocomial outbreaks caused by multidrug-resistant K. pneumoniae are commonly reported to result in high morbidity and mortality due to limited treatment options. Between October 2019 and January 2020, two concurrent high-mortality nosocomial outbreaks occurred in a referral hospital in Ho Chi Minh City, Vietnam. We performed genome sequencing and phylogenetic analysis of eight K. pneumoniae isolates from infected patients and two environmental isolates for outbreak investigation. We identified two outbreaks caused by two distinct lineages of the international sequence type (ST) 16 clone, which displayed extensive drug resistance, including resistance to carbapenem and colistin. Carbapenem-resistant ST16 outbreak strains clustered tightly with previously described ST16 K. pneumoniae from other hospitals in Vietnam, suggesting local persistence and transmission of this particular clone in this setting. We found environmental isolates from a hospital bed and blood pressure cuff that were genetically linked to an outbreak case cluster, confirming the potential of high-touch surfaces as sources for nosocomial spread of K. pneumoniae . Further, we found colistin resistance caused by disruption of the mgrB gene by an ISL3-like element, and carbapenem resistance mediated by a transferable IncF/bla OXA-181 plasmid carrying the ISL3-like element. Our study highlights the importance of coordinated efforts between clinical and molecular microbiologists and infection control teams to rapidly identify, investigate and contain nosocomial outbreaks. Routine surveillance with advanced sequencing technology should be implemented to strengthen hospital infection control and prevention measures.


2015 ◽  
Vol 59 (9) ◽  
pp. 5793-5797 ◽  
Author(s):  
Ryan K. Shields ◽  
Cornelius J. Clancy ◽  
Binghua Hao ◽  
Liang Chen ◽  
Ellen G. Press ◽  
...  

ABSTRACTAvibactam is a novel β-lactamase inhibitor with affinity forKlebsiella pneumoniaecarbapenemases (KPCs). In combination with ceftazidime, the agent demonstrates activity against KPC-producingK. pneumoniae(KPC-Kp). KPC-Kp strains are genetically diverse and harbor multiple resistance determinants, including defects in outer membrane proteins and extended-spectrum β-lactamases (ESBLs). Mutations in porin geneompK36confer high-level carbapenem resistance to KPC-Kp strains. Whether specific mechanisms of antimicrobial resistance also influence the activity of ceftazidime-avibactam is unknown. We defined the effects of ceftazidime-avibactam against 72 KPC-Kp strains with diverse mechanisms of resistance, including various combinations of KPC subtypes and ESBL andompK36mutations. Ceftazidime MICs ranged from 64 to 4,096 μg/ml and were lowered by a median of 512-fold with the addition of avibactam. All strains exhibited ceftazidime-avibactam MICs at or below the CLSI breakpoint for ceftazidime (≤4 μg/ml; range, 0.25 to 4). However, the MICs were within two 2-fold dilutions of the CLSI breakpoint against 24% of the strains, and those strains would be classified as nonsusceptible to ceftazidime by EUCAST criteria (MIC > 1 μg/ml). Median ceftazidime-avibactam MICs were higher against KPC-3 than KPC-2 variants (P= 0.02). Among KPC-2-Kp strains, the presence of both ESBL and porin mutations was associated with higher drug MICs compared to those seen with either factor alone (P= 0.003 andP= 0.02, respectively). In conclusion, ceftazidime-avibactam displays activity against genetically diverse KPC-Kp strains. Strains with higher-level drug MICs provide a reason for caution. Judicious use of ceftazidime-avibactam alone or in combination with other agents will be important to prevent the emergence of resistance.


2017 ◽  
Vol 61 (8) ◽  
Author(s):  
Astrid V. Cienfuegos-Gallet ◽  
Liang Chen ◽  
Barry N. Kreiswirth ◽  
J. Natalia Jiménez

ABSTRACT Here we describe the spread of colistin resistance in clinical isolates of carbapenem-resistant Klebsiella pneumoniae in Medellín, Colombia. Among 32 isolates collected between 2012 and 2014, 24 showed genetic alterations in mgrB. Nineteen isolates belonged to sequence type 512 (ST512) (or its single locus variant [SLV]) and harbored an 8.1-kb hsdMSR insertion corresponding to ISKpn25, indicating a clonal expansion of the resistant strain. The insertion region showed 100% identity to several plasmids, suggesting that the colistin resistance is mediated by chromosomal integration of plasmid DNA.


2020 ◽  
Vol 64 (6) ◽  
Author(s):  
Ching-Hsun Wang ◽  
L. Kristopher Siu ◽  
Feng-Yee Chang ◽  
Yu-Kuo Tsai ◽  
Yi-Tsung Lin ◽  
...  

ABSTRACT We report the first clinical Escherichia coli strain EC3000 with concomitant chromosomal colistin and carbapenem resistance. A novel in-frame deletion, Δ6-11 (RPISLR), in pmrB that contributes to colistin resistance was verified using recombinant DNA techniques. Although being less fit than the wild-type (WT) strain or EC3000 revertant (chromosomal replacement of WT pmrB in EC3000), a portion of serially passaged EC3000 strains preserving colistin resistance without selective pressure raises the concern for further spread.


2013 ◽  
Vol 57 (3) ◽  
pp. 1542-1545 ◽  
Author(s):  
Liang Chen ◽  
Kalyan D. Chavda ◽  
Roberto G. Melano ◽  
Michael R. Jacobs ◽  
Michael H. Levi ◽  
...  

ABSTRACTWe report the nucleotide sequence of a novelblaKPC-2-harboring IncFIIK1plasmid, pBK32179, isolated from a carbapenem-resistantKlebsiella pneumoniaeST258 strain from a New York City patient. pBK32179 is 165 kb long, consists of a large backbone of pKPN3-like plasmid, and carries an 18.5-kbblaKPC-2-containing element that is highly similar to plasmid pKpQIL. pBK32179-like plasmids were identified in 8.3% of strains in a collection of 96K. pneumoniaeisolates from hospitals in the New York City area.


2011 ◽  
Vol 55 (10) ◽  
pp. 4742-4747 ◽  
Author(s):  
Laura García-Sureda ◽  
Antonio Doménech-Sánchez ◽  
Mariette Barbier ◽  
Carlos Juan ◽  
Joan Gascó ◽  
...  

ABSTRACTClinical isolates ofKlebsiella pneumoniaeresistant to carbapenems are being isolated with increasing frequency. Loss of the expression of the major nonspecific porins OmpK35/36 is a frequent feature in these isolates. In this study, we looked for porins that could compensate for the loss of the major porins in carbapenem-resistant organisms. Comparison of the outer membrane proteins from twoK. pneumoniaeclinical isogenic isolates that are susceptible (KpCS-1) and resistant (KpCR-1) to carbapenems revealed the absence of OmpK35/36 and the presence of a new 26-kDa protein in the resistant isolate. An identical result was obtained when another pair of isogenic isolates that are homoresistant (Kpn-3) and heteroresistant (Kpn-17) to carbapenems were compared. Mass spectrometry and DNA sequencing analysis demonstrated that this new protein, designated OmpK26, is a small monomeric oligogalacturonate-specific porin that belongs to the KdgM family of porins. Insertion-duplication mutagenesis of the OmpK26 coding gene,yjhA, in the carbapenem-resistant, porin-deficient isolate KpCR-1 caused the expression of OmpK36 and the reversion to the carbapenem-susceptible phenotype, suggesting that OmpK26 is indispensable for KpCR-1 to lose OmpK36 and become resistant to these antibiotics. Moreover, loss of the major porin and expression of OmpK26 reducedin vitrofitness and attenuated virulence in a murine model of acute systemic infection. Altogether, these results indicate that expression of the oligogalacturonate-specific porin OmpK26 compensates for the absence of OmpK35/36 and allows carbapenem resistance inK. pneumoniaebut cannot restore the fitness of the microorganism.


Sign in / Sign up

Export Citation Format

Share Document