scholarly journals Genomic evolution of the globally disseminated multidrug-resistant Klebsiella pneumoniae clonal group 147

2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Carla Rodrigues ◽  
Siddhi Desai ◽  
Virginie Passet ◽  
Devarshi Gajjar ◽  
Sylvain Brisse

The rapid emergence of multidrug-resistant Klebsiella pneumoniae is being driven largely by the spread of specific clonal groups (CGs). Of these, CG147 includes 7-gene multilocus sequence typing (MLST) sequence types (STs) ST147, ST273 and ST392. CG147 has caused nosocomial outbreaks across the world, but its global population dynamics remain unknown. Here, we report a pandrug-resistant ST147 clinical isolate from India (strain DJ) and define the evolution and global emergence of CG147. Antimicrobial-susceptibility testing following European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines and genome sequencing (Illumina and Oxford Nanopore Technologies, Unicycler assembly) were performed on strain DJ. Additionally, we collated 217 publicly available CG147 genomes [National Center for Biotechnology Information (NCBI), May 2019]. CG147 evolution was inferred within a temporal phylogenetic framework (beast) based on a recombination-free sequence alignment (Roary/Gubbins). Comparative genomic analyses focused on resistance and virulence genes and other genetic elements (BIGSdb, Kleborate, PlasmidFinder, phaster, ICEfinder and CRISPRCasFinder). Strain DJ had a pandrug-resistance phenotype. Its genome comprised the chromosome, seven plasmids and one linear phage-plasmid. Four carbapenemase genes were detected: bla NDM-5 and two copies of bla OXA-181 in the chromosome, and a second copy of bla NDM-5 on an 84 kb IncFII plasmid. CG147 genomes carried a mean of 13 acquired resistance genes or mutations; 63 % carried a carbapenemase gene and 83 % harboured bla CTX-M. All CG147 genomes presented GyrA and ParC mutations and a common subtype I-E CRISPR-Cas system. ST392 and ST273 emerged in 2005 and 1995, respectively. ST147, the most represented phylogenetic branch, was itself divided into two main clades with distinct capsular loci: KL64 (74 %, DJ included, emerged in 1994 and disseminated worldwide, with carbapenemases varying among world regions) and KL10 (20 %, emerged in 2002, predominantly found in Asian countries, associated with carbapenemases NDM and OXA-48-like). Furthermore, subclades within ST147-KL64 differed at the yersiniabactin locus, OmpK35/K36 mutations, plasmid replicons and prophages. The absence of IncF plasmids in some subclades was associated with a possible activity of a CRISPR-Cas system. K. pneumoniae CG147 comprises pandrug-resistant or extensively resistant isolates, and carries multiple and diverse resistance genes and mobile genetic elements, including chromosomal bla NDM-5. Its emergence is being driven by the spread of several phylogenetic clades marked by their own genomic features and specific temporo–spatial dynamics. These findings highlight the need for precision surveillance strategies to limit the spread of particularly concerning CG147 subsets.

2021 ◽  
Author(s):  
Mattia Palmieri ◽  
Kelly L. Wyres ◽  
Caroline Mirande ◽  
Zhao Qiang ◽  
Ye Liyan ◽  
...  

Klebsiella pneumoniae is a frequent cause of nosocomial and severe community-acquired infections. Multidrug-resistant (MDR) and hypervirulent (hv) strains represent major threats, and tracking their emergence, evolution and the emerging convergence of MDR and hv traits is of major importance. We employed whole-genome sequencing (WGS) to study the evolution and epidemiology of a large longitudinal collection of clinical K. pneumoniae isolates from the H301 hospital in Beijing, China. Overall, the population was highly diverse, although some clones were predominant. Strains belonging to clonal group (CG) 258 were dominant, and represented the majority of carbapenemase-producers. While CG258 strains showed high diversity, one clone, ST11-KL47, represented the majority of isolates, and was highly associated with the KPC-2 carbapenemase and several virulence factors, including a virulence plasmid. The second dominant clone was CG23, which is the major hv clone globally. While it is usually susceptible to multiple antibiotics, we found some isolates harbouring MDR plasmids encoding for ESBLs and carbapenemases. We also reported the local emergence of a recently described high-risk clone, ST383. Conversely to strains belonging to CG258, which are usually associated to KPC-2, ST383 strains seem to readily acquire carbapenemases of different types. Moreover, we found several ST383 strains carrying the hypervirulence plasmid. Overall, we detected about 5 % of simultaneous carriage of AMR genes (ESBLs or carbapenemases) and hypervirulence genes. Tracking the emergence and evolution of such strains, causing severe infections with limited treatment options, is fundamental in order to understand their origin and evolution and to limit their spread. This article contains data hosted by Microreact.


2021 ◽  
Vol 7 (11) ◽  
Author(s):  
Jennifer Cornick ◽  
Patrick Musicha ◽  
Chikondi Peno ◽  
Ezgi Seager ◽  
Pui-Ying Iroh Tam ◽  
...  

A special-care neonatal unit from a large public hospital in Malawi was noted as having more frequent, difficult-to-treat infections, and a suspected outbreak of multi-drug-resistant Klebsiella pneumoniae was investigated using genomic characterisation. All K. pneumoniae bloodstream infections (BSIs) from patients in the neonatal ward (n=62), and a subset of K. pneumoniae BSI isolates (n=38) from other paediatric wards in the hospital, collected over a 4 year period were studied. After whole genome sequencing, the strain sequence types (STs), plasmid types, virulence and resistance genes were identified. One ST340 clone, part of clonal complex 258 (CC258) and an ST that drives hospital outbreaks worldwide, harbouring numerous resistance genes and plasmids, was implicated as the likely cause of the outbreak. This study contributes molecular information necessary for tracking and characterizing this important hospital pathogen in sub-Saharan Africa.


2020 ◽  
Vol 59 (1) ◽  
pp. e01649-20 ◽  
Author(s):  
C. Paul Morris ◽  
Yehudit Bergman ◽  
Tsigedera Tekle ◽  
John A. Fissel ◽  
Pranita D. Tamma ◽  
...  

ABSTRACTAntimicrobial susceptibility testing (AST) of cefiderocol poses challenges because of its unique mechanism of action (i.e., requiring an iron-depleted state) and due to differences in interpretative criteria established by the Clinical and Laboratory Standards Institute (CLSI), U.S. Food and Drug Administration (FDA), and European Committee on Antimicrobial Susceptibility Testing (EUCAST). Our objective was to compare cefiderocol disk diffusion methods (DD) to broth microdilution (BMD) for AST of Gram-negative bacilli (GNB). Cefiderocol AST was performed on consecutive carbapenem-resistant Enterobacterales (CRE; 58 isolates) and non-glucose-fermenting GNB (50 isolates) by BMD (lyophilized panels; Sensititre; Thermo Fisher) and DD (30 μg; research-use-only [RUO] MASTDISCS and FDA-cleared HardyDisks). Results were interpreted using FDA (prior to 28 September 2020 update), EUCAST, and investigational CLSI breakpoints (BPs). Categorical agreement (CA), minor errors (mE), major errors (ME), and very major errors (VME) were calculated for DD methods. The susceptibilities of all isolates by BMD were 72% (FDA), 75% (EUCAST) and 90% (CLSI). For DD methods, EUCAST BPs demonstrated lower susceptibility at 65% and 66%, compared to 74% and 72% (FDA) and 87% and 89% (CLSI) by HardyDisks and MASTDISCS, respectively. CA ranged from 75% to 90%, with 8 to 25% mE, 0 to 19% ME, and 0 to 20% VME and varied based on disk, GNB, and BPs evaluated. Both DD methods performed poorly for Acinetobacter baumannii complex. There is considerable variability when cefiderocol ASTs are interpreted using CLSI, FDA, and EUCAST breakpoints. DD offers a convenient alternative approach to BMD methods for cefiderocol AST, with the exception of A. baumannii complex isolates.


Author(s):  
Aleksandra Trościańczyk ◽  
Aneta Nowakiewicz ◽  
Sebastian Gnat ◽  
Dominik Łagowski ◽  
Marcelina Osińska ◽  
...  

Introduction. The possible transfer of antimicrobial resistance genes between Enterococcus faecium isolates from humans and different animal species, including those not covered by monitoring programs (e.g. pet and wildlife), poses a serious threat to public health. Hypothesis/Gap Statement. Little is known about occurrence and mechanisms of phenomenon of multidrug resistance of E. faecium isolated from various host species in Poland. Aim. The aim of the study was to characterize multidrug-resistant E. faecium isolated from humans and animals (livestock, pets and wildlife) in terms of the occurrence of genetic markers determining resistance. Methodology. Bacterial isolates were tested for phenotypic resistance and the presence of genes encoding resistance to macrolides, tetracycline, aminoglycosides, aminocyclitols and phenicols as well as efflux pump (emeA), resolvase (tndX) and integrase (Int-Tn) genes. The quinolone resistance-determining regions of gyrA and parC were sequenced. Results. Human isolates of E. faecium were characterized by high-level resistance to: ciprofloxacin, enrofloxacin, erythromycin (100 %), as well, as aminoglycosides resistance (kanamycin – 100%, streptomycin – 78 %, gentamicin – 78%). Regardless of the animal species, high level of resistance of E. faecium to tetracycline (from 88–100 %), erythromycin (from 82–94 %) and kanamycin (from 36–100 %) was observed. All E. faecium isolates from wildlife were resistant to fluoroquinolones. However, full susceptibility to vancomycin was observed in all isolates tested. Phenotypic antimicrobial resistance of E. faecium was identified in the presence of the following resistance genes: erm(B) (70%), msr(A) (50 %), tet(L) (35 %), tet(K) (34 %), tet(M) (76 %), aac(6’)-Ie-aph(2″)-Ia (25%), ant(6)-Ia (31%), aph(3)-IIIa (68 %), (tndX) (23 %), and integrase gene (Int-Tn) (34 %). A correlation between an amino acid substitution at positions 83 and 87 of gyrA and position 80 of parC and the high-level fluoroquinolone resistance in E. faecium has been observed as well. Conclusion. The level and range of antimicrobial resistance and the panel of resistance determinants is comparable between E. faecium isolates, despite host species.


2021 ◽  
Vol 70 (6) ◽  
Author(s):  
Hyunsul Jung ◽  
Johann D. D. Pitout ◽  
Barend C. Mitton ◽  
Kathy-Anne Strydom ◽  
Chanel Kingsburgh ◽  
...  

Introduction. Colistin is one of the last-resort antibiotics for treating multidrug-resistant (MDR) or extensively drug-resistant (XDR) lactose non-fermenting Gram-negative bacteria such as Pseudomonas aeruginosa and Acinetobacter baumannii . Gap Statement. As the rate of colistin resistance is steadily rising, there is a need for rapid and accurate antimicrobial susceptibility testing methods for colistin. The Rapid ResaPolymyxin Acinetobacter / Pseudomonas NP test has recently been developed for rapid detection of colistin resistance in P. aeruginosa and A. baumannii . Aim. The present study aimed to evaluate the performance of the Rapid ResaPolymyxin Acinetobacter / Pseudomonas NP test in comparison with the reference broth microdilution (BMD) method. Methodology. The Rapid ResaPolymyxin Acinetobacter / Pseudomonas NP test was performed using a total of 135 P . aeruginosa (17 colistin-resistant and 118 colistin-susceptible) and 66 A. baumannii isolates (32 colistin-resistant and 34 colistin-susceptible), in comparison with the reference BMD method. Results. The categorical agreement of the Rapid ResaPolymyxin Acinetobacter / Pseudomonas NP test with the reference BMD method was 97.5 % with a major error rate of 0 % (0/152) and a very major error (VME) rate of 10.2 %. The VME rate was higher (23.5 %) when calculated separately for P. aeruginosa isolates. The overall sensitivity and specificity were 89.8 and 100 %, respectively. Conclusion. The Rapid ResaPolymyxin Acinetobacter / Pseudomonas NP test performed better for A. baumannii than for P. aeruginosa .


2020 ◽  
Vol 2 (12) ◽  
Author(s):  
Geoffrey Foster ◽  
Manal AbuOun ◽  
Romain Pizzi ◽  
Bryn Tennant ◽  
Margaret McCall ◽  
...  

The ST307 multidrug-resistant CTX-M-15-producing Klebsiella pneumoniae is an emerging pathogen, which has become disseminated worldwide in humans but is rarely reported from other reservoirs. We report the first isolation of K. pneumoniae from an animal in Europe and also from a reptile, a captive tortoise, whose death it probably caused. Detection of this clone from an animal adds to evidence of niche expansion in non-human environments, where it may amplify, recycle and become of greater public health concern.


2021 ◽  
Vol 70 (11) ◽  
Author(s):  
Lii-Tzu Wu ◽  
Xin-Xia Wu ◽  
Se-Chin Ke ◽  
Yi-Pei Lin ◽  
Ying-Chen Wu ◽  
...  

Introduction. Antimicrobial resistance associated with animal hosts is easily transmitted to humans either by direct contact with resistant organisms or by transferring resistance genes into human pathogens. Gap statement. There are limited studies on antimicrobial resistance genes and genetic elements of multidrug-resistant (MDR) Escherichia coli in veterinary hospitals in Taiwan. Aim. The aim of this study was to investigate antimicrobial resistance genes in multidrug-resistant Escherichia coli from animals. Methodology. Between January 2014 and August 2015, 95 multidrug-resistant Escherichia coli isolates were obtained from pigs (n=66), avians (n=18), and other animals (n=11) in a veterinary hospital in Taiwan. Susceptibility testing to 24 antimicrobial agents of 14 antimicrobial classes was performed. Antimicrobial resistance genes, integrons, and insertion sequences were analysed by polymerase chain reaction and nucleotide sequencing. Pulsed-field gel electrophoresis (PFGE), and multi-locus sequence typing were used to explore the clonal relatedness of the study isolates. Results. Different antimicrobial resistance genes found in these isolates were associated with resistance to β-lactams, tetracycline, phenicols, sulfonamides, and aminoglycosides. Fifty-five of 95 E. coli isolates (55/95, 57.9 %) were not susceptible to extended-spectrum cephalosporins, and bla CTX-M-55 (11/55, 20.0 %) and bla CMY-2 (40/55, 72.7 %) were the most common extended-spectrum β-lactamase (ESBL) and AmpC genes, respectively. Both bla CTX-M and bla CMY-2 were present on conjugative plasmids that contained the insertion sequence ISEcp1 upstream of the bla genes. Plasmid-mediated FOX-3 β-lactamase-producing E. coli was first identified in Taiwan. Forty isolates (40/95, 42 %) with class 1 integrons showed seven resistance phenotypes. Genotyping of 95 E. coli isolates revealed 91 different XbaI pulsotypes and 52 different sequence types. PFGE analysis revealed no clonal outbreaks in our study isolates. Conclusion. This study showed a high diversity of antimicrobial resistance genes and genotypes among MDR E. coli isolated from diseased livestock in Taiwan. To our knowledge, this is the first report of plasmid-mediated ESBL in FOX-3 β-lactamase-producing E. coli isolates in Taiwan. MDR E. coli isolates from animal origins may contaminate the environment, resulting in public health concerns, indicating that MDR isolates from animals need to be continuously investigated.


2020 ◽  
Vol 69 (12) ◽  
pp. 1398-1404
Author(s):  
Miriam Cordovana ◽  
Anna Zignoli ◽  
Simone Ambretti

Introduction. Rapid identification of the causative agent of sepsis is crucial for patient outcomes. Aim. The Sepsityper sample preparation method enables direct microbial identification of positive blood culture samples via matrix-assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI-TOF MS). Hypothesis/Gap statement. The implementation of the Sepsityper method in the routine practice could represent a fundamental tool to achieve a prompt identification of the causative agent of bloodstream infections, and therefore accelerate the adoption of the proper antibiotic treatment. Methodology. In this study, the novel rapid workflow of the MALDI Biotypr Sepsityper kit (Bruker Daltonik GmbH, Germany) was evaluated using routine samples from a 2-year period (n=6918), and dedicated optimized protocols for the microbial groups that were more difficult to identify were developed. Moreover, the use of the residual bacterial pellet to perform susceptibility testing using different methods (commercial broth microdilution, disc diffusion, gradient diffusion) was investigated. Results. The rapid Sepsityper protocol allowed the identification of 5470/6338 (86.3 %) monomicrobial samples at species level, with very good performance for all of the clinically most significant pathogens (2510/2592 enterobacteria, 631/669 Staphylococcus aureus and 223/246 enterococci were identified). Streptococcus pneumoniae , Bacteroides fragilis and yeasts were the most troublesome to identify, but the application of specific optimized protocols significantly improved their rate of identification (from 14.7–71.5 %, 47.8–89.7 % and 37.1–89.5 %, respectively). Specificity was 100 % (no identification was made for the false-positive samples). Further, the residual pellet proved to be suitable to investigate susceptibility to antimicrobials, enabling us to simplify the workflow and shorten the time to report. Conclusion. The Rapid Sepsityper workflow proved to be a reliable sample preparation method for identification and susceptibility testing directly from positive blood cultures, providing novel approaches for accelerated diagnostics of bloodstream infections.


Author(s):  
Luís Guilherme de Araújo Longo ◽  
Herrison Fontana ◽  
Viviane Santos de Sousa ◽  
Natalia Chilinque Zambão da Silva ◽  
Ianick Souto Martins ◽  
...  

Klebsiella pneumoniae causes a diversity of infections in both healthcare and community settings. This pathogen is showing an increased ability to accumulate antimicrobial resistance and virulence genes, making it a public health concern. Here we describe the whole-genome sequence characteristics of an ST15 colistin-resistant K. pneumoniae isolate obtained from a blood culture of a 79-year-old female patient admitted to a university hospital in Brazil. Kp14U04 was resistant to most clinically useful antimicrobial agents, remaining susceptible only to aminoglycosides and fosfomycin. The colistin resistance in this isolate was due to a ~1.3 kb deletion containing four genes, namely mgrB, yebO, yobH and the transcriptional regulator kdgR. The study isolate presented a variety of antimicrobial resistance genes, including the carbapenemase-encoding gene bla KPC-2, the extended-spectrum beta-lactamase (ESBL)-encoding gene bla SHV-28 and the beta-lactamase-encoding gene bla OXA-1. Additionally, Kp14U04 harboured a multiple stress resistance protein, efflux systems and regulators, heavy metal resistance and virulence genes, plasmids, prophage-related sequences and genomic islands. These features revealed the high potential of this isolate to resist antimicrobial therapy, survive in adverse environments, cause infections and overcome host defence mechanisms.


Sign in / Sign up

Export Citation Format

Share Document