Checkboard Antimicrobial Susceptibility Testing of Multidrug Resistant Klebsiella Pneumoniae Isolated from Patients with Ventilator Associated Pneumonia

2012 ◽  
Vol 21 (4) ◽  
pp. 89-98
Author(s):  
Randa S. Abd El-Latif ◽  
Nissreen E. Elbadawy ◽  
Hoda A. El-Hady
2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Carla Rodrigues ◽  
Siddhi Desai ◽  
Virginie Passet ◽  
Devarshi Gajjar ◽  
Sylvain Brisse

The rapid emergence of multidrug-resistant Klebsiella pneumoniae is being driven largely by the spread of specific clonal groups (CGs). Of these, CG147 includes 7-gene multilocus sequence typing (MLST) sequence types (STs) ST147, ST273 and ST392. CG147 has caused nosocomial outbreaks across the world, but its global population dynamics remain unknown. Here, we report a pandrug-resistant ST147 clinical isolate from India (strain DJ) and define the evolution and global emergence of CG147. Antimicrobial-susceptibility testing following European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines and genome sequencing (Illumina and Oxford Nanopore Technologies, Unicycler assembly) were performed on strain DJ. Additionally, we collated 217 publicly available CG147 genomes [National Center for Biotechnology Information (NCBI), May 2019]. CG147 evolution was inferred within a temporal phylogenetic framework (beast) based on a recombination-free sequence alignment (Roary/Gubbins). Comparative genomic analyses focused on resistance and virulence genes and other genetic elements (BIGSdb, Kleborate, PlasmidFinder, phaster, ICEfinder and CRISPRCasFinder). Strain DJ had a pandrug-resistance phenotype. Its genome comprised the chromosome, seven plasmids and one linear phage-plasmid. Four carbapenemase genes were detected: bla NDM-5 and two copies of bla OXA-181 in the chromosome, and a second copy of bla NDM-5 on an 84 kb IncFII plasmid. CG147 genomes carried a mean of 13 acquired resistance genes or mutations; 63 % carried a carbapenemase gene and 83 % harboured bla CTX-M. All CG147 genomes presented GyrA and ParC mutations and a common subtype I-E CRISPR-Cas system. ST392 and ST273 emerged in 2005 and 1995, respectively. ST147, the most represented phylogenetic branch, was itself divided into two main clades with distinct capsular loci: KL64 (74 %, DJ included, emerged in 1994 and disseminated worldwide, with carbapenemases varying among world regions) and KL10 (20 %, emerged in 2002, predominantly found in Asian countries, associated with carbapenemases NDM and OXA-48-like). Furthermore, subclades within ST147-KL64 differed at the yersiniabactin locus, OmpK35/K36 mutations, plasmid replicons and prophages. The absence of IncF plasmids in some subclades was associated with a possible activity of a CRISPR-Cas system. K. pneumoniae CG147 comprises pandrug-resistant or extensively resistant isolates, and carries multiple and diverse resistance genes and mobile genetic elements, including chromosomal bla NDM-5. Its emergence is being driven by the spread of several phylogenetic clades marked by their own genomic features and specific temporo–spatial dynamics. These findings highlight the need for precision surveillance strategies to limit the spread of particularly concerning CG147 subsets.


2018 ◽  
Vol 5 ◽  
pp. 32-38
Author(s):  
Pushpa Man Shrestha ◽  
Nisha Thapa ◽  
Navraj Dahal ◽  
Nabaraj Adhikari ◽  
Upendra Thapa Shrestha

Objectives: This study aimed to identify the microbiological profile of various catheter tips, and multidrug resistance pattern of extended spectrum β-lactamase (ESBL) producing E. coli and Klebsiella spp. isolates. Methods: A descriptive analysis of 263 catheter tip specimens processed for culture and antimicrobial susceptibility testing was carried out in B&B Hospital, Lalitpur. Five different types of catheter tips were analyzed for microbiological growth and antimicrobial susceptibility testing. Results: Among catheter tips, the highest percentage of microbial growth was observed in tracheostomy tip. Monomicrobial growth was recorded in 82.9% catheter tips and polymicrobial growth was observed in 17.1% tip samples. Of 180 isolates, gram negative rods (76.6%) followed by yeast (19.4%) and gram-positive cocci (3.9%) were isolated. Gram negative Acinetobacter spp. (25%) and Pseudomonas spp. (23.3%) and gram-positive Enterococcus spp. (2.2%) were the most frequently isolated bacteria. However, carbapenam was the most effective antibiotic for both groups. Conclusion: Of the total isolates tested, 61.4% were found to be multidrug resistant (MDR). Among gram negative rods, 22.2% E. coli and 27.3% Klebsiella spp. were confirmed as ESBL producer. It is recommended to apply standard protocol during insertion and removal of catheter which may help in managing nosocomial infection associated with catheters.


2020 ◽  
Vol 59 (1) ◽  
pp. e01649-20 ◽  
Author(s):  
C. Paul Morris ◽  
Yehudit Bergman ◽  
Tsigedera Tekle ◽  
John A. Fissel ◽  
Pranita D. Tamma ◽  
...  

ABSTRACTAntimicrobial susceptibility testing (AST) of cefiderocol poses challenges because of its unique mechanism of action (i.e., requiring an iron-depleted state) and due to differences in interpretative criteria established by the Clinical and Laboratory Standards Institute (CLSI), U.S. Food and Drug Administration (FDA), and European Committee on Antimicrobial Susceptibility Testing (EUCAST). Our objective was to compare cefiderocol disk diffusion methods (DD) to broth microdilution (BMD) for AST of Gram-negative bacilli (GNB). Cefiderocol AST was performed on consecutive carbapenem-resistant Enterobacterales (CRE; 58 isolates) and non-glucose-fermenting GNB (50 isolates) by BMD (lyophilized panels; Sensititre; Thermo Fisher) and DD (30 μg; research-use-only [RUO] MASTDISCS and FDA-cleared HardyDisks). Results were interpreted using FDA (prior to 28 September 2020 update), EUCAST, and investigational CLSI breakpoints (BPs). Categorical agreement (CA), minor errors (mE), major errors (ME), and very major errors (VME) were calculated for DD methods. The susceptibilities of all isolates by BMD were 72% (FDA), 75% (EUCAST) and 90% (CLSI). For DD methods, EUCAST BPs demonstrated lower susceptibility at 65% and 66%, compared to 74% and 72% (FDA) and 87% and 89% (CLSI) by HardyDisks and MASTDISCS, respectively. CA ranged from 75% to 90%, with 8 to 25% mE, 0 to 19% ME, and 0 to 20% VME and varied based on disk, GNB, and BPs evaluated. Both DD methods performed poorly for Acinetobacter baumannii complex. There is considerable variability when cefiderocol ASTs are interpreted using CLSI, FDA, and EUCAST breakpoints. DD offers a convenient alternative approach to BMD methods for cefiderocol AST, with the exception of A. baumannii complex isolates.


2019 ◽  
Vol 2 (3) ◽  
pp. 72-75 ◽  
Author(s):  
M Gajdács

Purpose Pantoea species are pigmented, Gram-negative rods belonging to the Enterobacterales order. They are considered rare, opportunistic pathogens and are mostly implicated in nosocomial outbreaks affecting neonates and immunocompromised patients. The aim of this study was to describe the prevalence and antibiotic susceptibility of Pantoea species during a 12-year period. Materials and methods This retrospective study was carried out using microbiological data collected between January 1, 2006 and December 31, 2017. Patients’ data such as age, sex, inpatient/outpatient status, and empiric antibiotic therapy were also collected. Antimicrobial susceptibility testing was performed using E-tests; the interpretation was based on European Committee on Antimicrobial Susceptibility Testing breakpoints for Enterobacterales. Results Seventy individual Pantoea spp. isolates were identified; the most frequently isolated species was Pantoea agglomerans. Most isolates were susceptible to relevant antibiotics. In 61 out of 68 patients, ampicillin was the empirically administered antibiotic. The highest levels of resistance were to amoxicillin–clavulanic acid and ampicillin. No extended spectrum beta-lactamase-positive isolate was detected. Conclusions There is a scarcity of data available on the susceptibility patterns of Pantoea species, but our results correspond to what we could find in the literature. The development of multidrug-resistant (MDR) Gram-negative bacteria is a grave concern, and the development of MDR Pantoea spp. may be expected in the future.


2020 ◽  
Vol 75 (9) ◽  
pp. 2485-2494 ◽  
Author(s):  
Jiayue Lu ◽  
Ning Dong ◽  
Congcong Liu ◽  
Yu Zeng ◽  
Qiaoling Sun ◽  
...  

Abstract Objectives To investigate the nationwide prevalence of mcr-1-positive Klebsiella pneumoniae (MCRPKP) strains among healthy adults in China and identify their phenotypic and genomic characterizations. Methods A total of 7401 rectal swab samples were collected from healthy individuals in 30 hospitals located in 30 provinces and municipalities of mainland China in 2016. Colistin-resistant bacteria were enriched in colistin-supplemented lysogeny broth. MCRPKP strains were isolated and characterized with MALDI-TOF MS, PCR analysis and antimicrobial susceptibility testing. The genomic characteristics of MCRPKP strains were determined by WGS and bioinformatics analysis. Results Seven MCRPKP strains and one mcr-1-positive Klebsiella variicola strain were selectively isolated from six locales (three from Henan and one from each of Tianjin, Jiangxi, Yunnan, Gansu and Tibet). Antimicrobial susceptibility testing results indicated that all mcr-1-positive strains were susceptible to meropenem, aztreonam and ceftazidime/avibactam. WGS analysis suggested these strains belonged to seven distinct STs: ST15, ST1425, ST1462, ST273, ST307, ST391 and ST37-SLV. mcr-1 genes were carried by diverse plasmids, including IncHI2 (n = 3), IncX4 (n = 2), IncHI2/IncN (n = 1), IncFIB (n = 1) and one other plasmid type. Two ST15 strains harboured both mcr-1 and mcr-8 genes, which has not been reported before. Conclusions Our data indicated a low prevalence of mcr-1-positive Klebsiella strains (0.11%, 8/7401) in healthy individuals in mainland China and most of these strains remained susceptible to clinically important antibiotics. The prevalence and coexistence of mcr-1 and mcr-8 in K. pneumoniae may further threaten public health through either the food chain or environmental routes.


2020 ◽  
Vol 75 (7) ◽  
pp. 1747-1755 ◽  
Author(s):  
Xi Yang ◽  
Marjan M Hashemi ◽  
Nadya Andini ◽  
Michelle M Li ◽  
Shuzhen Kuang ◽  
...  

Abstract Objectives Traditional antimicrobial susceptibility testing (AST) is growth dependent and time-consuming. With rising rates of drug-resistant infections, a novel diagnostic method is critically needed that can rapidly reveal a pathogen’s antimicrobial susceptibility to guide appropriate treatment. Recently, RNA sequencing has been identified as a powerful diagnostic tool to explore transcriptional gene expression and improve AST. Methods RNA sequencing was used to investigate the potential of RNA markers for rapid molecular AST using Klebsiella pneumoniae and ciprofloxacin as a model. Downstream bioinformatic analysis was applied for optimal marker selection. Further validation on 11 more isolates of K. pneumoniae was performed using quantitative real-time PCR. Results From RNA sequencing, we identified RNA signatures that were induced or suppressed following exposure to ciprofloxacin. Significant shifts at the transcript level were observed as early as 10 min after antibiotic exposure. Lastly, we confirmed marker expression profiles with concordant MIC results from traditional culture-based AST and validated across 11 K. pneumoniae isolates. recA, coaA and metN transcripts harbour the most sensitive susceptibility information and were selected as our top markers. Conclusions Our results suggest that RNA signature is a promising approach to AST development, resulting in faster clinical diagnosis and treatment of infectious disease. This approach is potentially applicable in other models including other pathogens exposed to different classes of antibiotics.


2011 ◽  
Vol 2011 ◽  
pp. 1-4 ◽  
Author(s):  
Scott D. Fitzgerald ◽  
Angie M. Schooley ◽  
Dale E. Berry ◽  
John B. Kaneene

Michigan has had an ongoing outbreak of endemicMycobacterium boviswhich has been recognized within and sustained by its free-ranging white-tailed deer population since 1994. Worldwide, organisms within theMycobacterium tuberculosiscomplex have exhibited the ability to develop resistance to antimicrobial agents, resulting in both the multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains of human tuberculosis. Michigan's Bovine Tuberculosis Working Group has conducted active antimicrobial susceptibility testing on wildlife isolates of the endemicM. bovisorganism at five-year intervals to detect any emerging drug resistance patterns. The results of 33 white-tailed deer origin isolates collected from the 2009 hunting season are reported here. There continues to be no evidence of any drug resistance except for pyrazinamide resistance. These results are likely due to the lack of antibacterial treatment applied to either wildlife or domestic animals which would provide selection pressure for the development of drug resistance.


Sign in / Sign up

Export Citation Format

Share Document