scholarly journals Identification of a repressor for the two iol operons required for inositol catabolism in Geobacillus kaustophilus

Microbiology ◽  
2020 ◽  
Author(s):  
Ken-ichi Yoshida ◽  
Yusuke Shirae ◽  
Ryo Nishimura ◽  
Kaho Fukui ◽  
Shu Ishikawa

Geobacillus kaustophilus HTA426, a thermophilic Gram-positive bacterium, feeds on inositol as its sole carbon source, and an iol gene cluster required for inositol catabolism has been postulated with reference to the iol genes in Bacillus subtilis . The iol gene cluster of G. kaustophilus comprises two tandem operons induced in the presence of inositol; however, the mechanism underlying this induction remains unclear. B. subtilis iolQ is known to be involved in the regulation of iolX encoding scyllo-inositol dehydrogenase, and its homologue in HTA426 was found two genes upstream of the first gene (gk1899) of the iol gene cluster and was termed iolQ in G. kaustophilus . When iolQ was inactivated in G. kaustophilus , not only cellular myo-inositol dehydrogenase activity due to gk1899 expression but also the transcription of the two iol operons became constitutive. IolQ was produced and purified as a C-terminal histidine (His)-tagged fusion protein in Escherichia coli and subjected to an in vitro gel electrophoresis mobility shift assay to examine its DNA-binding property. It was observed that IolQ bound to the DNA fragments containing each of the two iol promoter regions and that DNA binding was antagonized by myo-inositol. Moreover, DNase I footprinting analyses identified two tandem binding sites of IolQ within each of the iol promoter regions. By comparing the sequences of the binding sites, a consensus sequence for IolQ binding was deduced to form a palindrome of 5′-RGWAAGCGCTTSCY-3′ (where R=A or G, W=A or T, S=G or C, and Y=C or T). IolQ functions as a transcriptional repressor regulating the induction of the two iol operons responding to myo-inositol.

2020 ◽  
Author(s):  
Ken-ichi Yoshida ◽  
Yusuke Shirae ◽  
Ryo Nishimura ◽  
Kaho Fukui ◽  
Shu Ishikawa

Abstract BackgroundGeobacillus kaustophilus HTA426, a thermophilic Gram-positive bacterium, grows on inositol as its sole carbon source, and an iol gene cluster required for inositol catabolism has been postulated with reference to the iol genes in Bacillus subtilis. The iol gene cluster consists of two tandem operons induced in the presence of inositol; however, the mechanism underlying the induction remains unclear. B. subtilis iolQ is known to be involved in the regulation of iolX encoding a scyllo-inositol dehydrogenase, and its homolog in HTA426 was found two genes upstream of the first gene (gk1899) of the iol gene cluster and termed as iolQ in G. kaustophilus.ResultsWhen iolQ was inactivated, not only the myo-inositol dehydrogenase activity in the cell due to the expression of gk1899 but also the transcription of the two iol operons became constitutive. IolQ was produced and purified as a C-terminal His-tag fusion in Escherichia coli and subjected to the in vitro gel mobility shift assay to examine its DNA binding property. It was observed that IolQ bound to the DNA fragments containing each of the two iol promoter regions, and its DNA binding was antagonized by myo-inositol. Moreover, DNase I footprint analyses were conducted to determine the two binding sites of IolQ within each of the iol promoter regions. By comparing the sequences of the binding sites, a consensus sequence for IolQ binding was deduced to be a palindrome of 5′-RGWAAGCGCTTSCY-3′ (where R = A or G, W = A or T, S = G or C, and Y = C or T).ConclusionIolQ functions as a transcriptional repressor regulating the induction of the two iol operons responding to myo-inositol.


Author(s):  
Aki Hirabayashi ◽  
Van Thi Thu Ha ◽  
An Van Nguyen ◽  
Son Thai Nguyen ◽  
Keigo Shibayama ◽  
...  

Tigecycline is a last-resort antimicrobial used to treat multidrug-resistant Gram-negative bacterial infections. One of the common antimicrobial resistance mechanisms is the efflux pump system composed of membrane protein complexes to excrete xenobiotic substrates. Recently, a novel gene cluster, tmexCD1-toprJ1, encoding the resistance–nodulation–cell division (RND) efflux pump was identified on plasmids in Klebsiella pneumoniae isolates in China. TMexCD1-TOprJ1 was found to be capable of excreting multiple antimicrobials, including tigecycline, which contributed to the strain's resistance. In this study, we identified K. pneumoniae isolates harbouring the tmexCD1-toprJ1 genes outside of China for the first time. Two tigecycline-resistant K. pneumoniae isolates belonging to ST273 by multilocus sequence typing were collected from different patients in a medical institution in Hanoi, Vietnam, in 2015. Whole-genome sequence analysis revealed that these isolates harboured a 288.0 kb tmexCD1-toprJ1–carrying plasmid with IncFIB and IncHI1B replicons. The tmexCD1-toprJ1 gene cluster was surrounded by several mobile gene elements, including IS26, and the plasmids had high sequence identity with that of K. pneumoniae isolated in China. Our finding suggests that the horizontal spread of tigecycline resistance mediated by tmexCD1-toprJ1–carrying plasmids has occurred in Vietnam and other countries, and raises concern about the further global dissemination.


Microbiology ◽  
2021 ◽  
Vol 167 (9) ◽  
Author(s):  
Janetta Top ◽  
Jery Baan ◽  
Adinda Bisschop ◽  
Sergio Arredondo-Alonso ◽  
Willem van Schaik ◽  
...  

Enterococcus faecium is a nosocomial, multidrug-resistant pathogen. Whole genome sequence studies revealed that hospital-associated E. faecium isolates are clustered in a separate clade A1. Here, we investigated the distribution, integration site and function of a putative iol gene cluster that encodes for myo-inositol (MI) catabolism. This iol gene cluster was found as part of an ~20 kbp genetic element (iol element), integrated in ICEEfm1 close to its integrase gene in E. faecium isolate E1679. Among 1644 E. faecium isolates, ICEEfm1 was found in 789/1227 (64.3 %) clade A1 and 3/417 (0.7 %) non-clade A1 isolates. The iol element was present at a similar integration site in 180/792 (22.7 %) ICEEfm1-containing isolates. Examination of the phylogenetic tree revealed genetically closely related isolates that differed in presence/absence of ICEEfm1 and/or iol element, suggesting either independent acquisition or loss of both elements. E. faecium iol gene cluster containing isolates E1679 and E1504 were able to grow in minimal medium with only myo-inositol as carbon source, while the iolD-deficient mutant in E1504 (E1504∆iolD) lost this ability and an iol gene cluster negative recipient strain gained this ability after acquisition of ICEEfm1 by conjugation from donor strain E1679. Gene expression profiling revealed that the iol gene cluster is only expressed in the absence of other carbon sources. In an intestinal colonization mouse model the colonization ability of E1504∆iolD mutant was not affected relative to the wild-type E1504 strain. In conclusion, we describe and functionally characterise a gene cluster involved in MI catabolism that is associated with the ICEEfm1 island in hospital-associated E. faecium isolates. We were unable to show that this gene cluster provides a competitive advantage during gut colonisation in a mouse model. Therefore, to what extent this gene cluster contributes to the spread and ecological specialisation of ICEEfm1-carrying hospital-associated isolates remains to be investigated.


Microbiology ◽  
2020 ◽  
Vol 166 (6) ◽  
pp. 567-578 ◽  
Author(s):  
Fariza Ammam ◽  
Delphine Patin ◽  
Héloise Coullon ◽  
Didier Blanot ◽  
Thierry Lambert ◽  
...  

Clostridium difficile 630 possesses a cryptic but functional gene cluster vanG Cd homologous to the vanG operon of Enterococcus faecalis . Expression of vanG Cd in the presence of subinhibitory concentrations of vancomycin is accompanied by peptidoglycan amidation on the meso-DAP residue. In this paper, we report the presence of two potential asparagine synthetase genes named asnB and asnB2 in the C. difficile genome whose products were potentially involved in this peptidoglycan structure modification. We found that asnB expression was only induced when C. difficile was grown in the presence of vancomycin, yet independently from the vanG Cd resistance and regulation operons. In addition, peptidoglycan precursors were not amidated when asnB was inactivated. No change in vancomycin MIC was observed in the asnB mutant strain. In contrast, overexpression of asnB resulted in the amidation of most of the C. difficile peptidoglycan precursors and in a weak increase of vancomycin susceptibility. AsnB activity was confirmed in E. coli . In contrast, the expression of the second asparagine synthetase, AsnB2, was not induced in the presence of vancomycin. In summary, our results demonstrate that AsnB is responsible for peptidoglycan amidation of C. difficile in the presence of vancomycin.


2021 ◽  
Vol 7 (6) ◽  
Author(s):  
Preetha Shibu ◽  
Frazer McCuaig ◽  
Anne L. McCartney ◽  
Magdalena Kujawska ◽  
Lindsay J. Hall ◽  
...  

As part of the ongoing studies with clinically relevant Klebsiella spp., we characterized the genomes of three clinical GES-5-positive ST138 strains originally identified as Klebsiella oxytoca. bla OXY gene, average nucleotide identity and phylogenetic analyses showed the strains to be Klebsiella michiganensis . Affiliation of the strains to ST138 led us to demonstrate that the current multi-locus sequence typing scheme for K. oxytoca can be used to distinguish members of this genetically diverse complex of bacteria. The strains encoded the kleboxymycin biosynthetic gene cluster (BGC), previously only found in K. oxytoca strains and one strain of Klebsiella grimontii . The finding of this BGC, associated with antibiotic-associated haemorrhagic colitis, in K. michiganensis led us to carry out a wide-ranging study to determine the prevalence of this BGC in Klebsiella spp. Of 7170 publicly available Klebsiella genome sequences screened, 88 encoded the kleboxymycin BGC. All BGC-positive strains belonged to the K. oxytoca complex, with strains of four ( K. oxytoca , K. pasteurii , K. grimontii , K. michiganensis ) of the six species of complex found to encode the complete BGC. In addition to being found in K. grimontii strains isolated from preterm infants, the BGC was found in K. oxytoca and K. michiganensis metagenome-assembled genomes recovered from neonates. Detection of the kleboxymycin BGC across the K. oxytoca complex may be of clinical relevance and this cluster should be included in databases characterizing virulence factors, in addition to those characterizing BGCs.


2021 ◽  
Vol 7 (3) ◽  
Author(s):  
Mohammad Hamidian ◽  
Ruth M. Hall

Acinetobacter baumannii is a successful opportunistic pathogen that can compete for iron under iron-limiting conditions. Here, large novel transposons that carry genes for synthesis and transport of the fimsbactin siderophores present in some A. baumannii strains were examined. Tn6171, originally found in the A. baumannii global clone 1 (GC1) lineage 2 isolate D36, includes tns genes encoding proteins related to the TnsA, TnsB, TnsC transposition proteins (50–59 % identity), TnsD targeting protein (43 % identity) and TnsE (31 % identity) of Tn7, and is found in the chromosome downstream of the glmS gene, the preferred location for Tn7, flanked by a 5 bp target site duplication. Tn6171 is bounded by 29 bp inverted repeats and, like Tn7, includes additional TnsB binding sites at each end. Tn6171 or minor variants were detected in the equivalent location in complete or draft genomes of several further A. baumannii isolates belonging to GC1 [sequence type (ST) 1, ST81, ST94, ST328, ST623, ST717], GC2 (ST2) and ST10. However, in some of these isolates the surrounding glmS region was clearly derived from a different A. baumannii lineage, indicating that the transposon may have been acquired by replacement of a segment of the chromosome. A recombination-free phylogeny revealed that there were several transposon acquisition events in GC1. The GC1 isolates were mainly lineage 2, but a potential third lineage was also detected. A related transposon, designated Tn6552, was detected in ATCC 17978 (ST437) and other ST437 isolates. However, the Tn6552 tnsD targeting gene was interrupted by an ISAba12, and Tn6552 is not downstream of glmS.


2015 ◽  
Vol 197 (14) ◽  
pp. 2383-2391 ◽  
Author(s):  
Semen A. Leyn ◽  
Irina A. Rodionova ◽  
Xiaoqing Li ◽  
Dmitry A. Rodionov

ABSTRACTAutotrophic microorganisms are able to utilize carbon dioxide as their only carbon source, or, alternatively, many of them can grow heterotrophically on organics. Different variants of autotrophic pathways have been identified in various lineages of the phylumCrenarchaeota. Aerobic members of the orderSulfolobalesutilize the hydroxypropionate-hydroxybutyrate cycle (HHC) to fix inorganic carbon, whereas anaerobicThermoprotealesuse the dicarboxylate-hydroxybutyrate cycle (DHC). Knowledge of transcriptional regulation of autotrophic pathways inArchaeais limited. We applied a comparative genomics approach to predict novel autotrophic regulons in theCrenarchaeota. We report identification of two novel DNA motifs associated with the autotrophic pathway genes in theSulfolobales(HHC box) andThermoproteales(DHC box). Based on genome context evidence, the HHC box regulon was attributed to a novel transcription factor from the TrmB family named HhcR. Orthologs of HhcR are present in allSulfolobalesgenomes but were not found in other lineages. A predicted HHC box regulatory motif was confirmed byin vitrobinding assays with the recombinant HhcR protein fromMetallosphaera yellowstonensis. For the DHC box regulon, we assigned a different potential regulator, named DhcR, which is restricted to the orderThermoproteales. DhcR inThermoproteus neutrophilus(Tneu_0751) was previously identified as a DNA-binding protein with high affinity for the promoter regions of two autotrophic operons. The global HhcR and DhcR regulons reconstructed by comparative genomics were reconciled with available omics data inMetallosphaeraandThermoproteusspp. The identified regulons constitute two novel mechanisms for transcriptional control of autotrophic pathways in theCrenarchaeota.IMPORTANCELittle is known about transcriptional regulation of carbon dioxide fixation pathways inArchaea. We previously applied the comparative genomics approach for reconstruction of DtxR family regulons in diverse lineages ofArchaea. Here, we utilize similar computational approaches to identify novel regulatory motifs for genes that are autotrophically induced in microorganisms from two lineages ofCrenarchaeotaand to reconstruct the respective regulons. The predicted novel regulons in archaeal genomes control the majority of autotrophic pathway genes and also other carbon and energy metabolism genes. The HhcR regulon was experimentally validated by DNA-binding assays inMetallosphaeraspp. Novel regulons described for the first time in this work provide a basis for understanding the mechanisms of transcriptional regulation of autotrophic pathways inArchaea.


1993 ◽  
Vol 13 (9) ◽  
pp. 5805-5813 ◽  
Author(s):  
M M Wang ◽  
R Y Tsai ◽  
K A Schrader ◽  
R R Reed

Genes which mediate odorant signal transduction are expressed at high levels in neurons of the olfactory epithelium. The molecular mechanism governing the restricted expression of these genes likely involves tissue-specific DNA binding proteins which coordinately activate transcription through sequence-specific interactions with olfactory promoter regions. We have identified binding sites for the olfactory neuron-specific transcription factor, Olf-1, in the sequences surrounding the transcriptional initiation site of five olfactory neuron-specific genes. The Olf-1 binding sites described define the consensus sequence YTCCCYRGGGAR. In addition, we have identified a second binding site, the U site, in the olfactory cyclic nucleotide gated channel and type III cyclase promoters, which binds factors present in all tissue examined. These experiments support a model in which expression of Olf-1 in the sensory neurons coordinately activates a set of olfactory neuron-specific genes. Furthermore, expression of a subset of these genes may be modulated by additional binding factors.


2000 ◽  
Vol 74 (5) ◽  
pp. 2084-2093 ◽  
Author(s):  
Joel Schaley ◽  
Robert J. O'Connor ◽  
Laura J. Taylor ◽  
Dafna Bar-Sagi ◽  
Patrick Hearing

ABSTRACT The adenovirus type 5 (Ad5) E4-6/7 protein interacts directly with different members of the E2F family and mediates the cooperative and stable binding of E2F to a unique pair of binding sites in the Ad5 E2a promoter region. This induction of E2F DNA binding activity strongly correlates with increased E2a transcription when analyzed using virus infection and transient expression assays. Here we show that while different adenovirus isolates express an E4-6/7 protein that is capable of induction of E2F dimerization and stable DNA binding to the Ad5 E2a promoter region, not all of these viruses carry the inverted E2F binding site targets in their E2a promoter regions. The Ad12 and Ad40 E2a promoter regions bind E2F via a single binding site. However, these promoters bind adenovirus-induced (dimerized) E2F very weakly. The Ad3 E2a promoter region binds E2F very poorly, even via a single binding site. A possible explanation of these results is that the Ad E4-6/7 protein evolved to induce cellular gene expression. Consistent with this notion, we show that infection with different adenovirus isolates induces the binding of E2F to an inverted configuration of binding sites present in the cellular E2F-1 promoter. Transient expression of the E4-6/7 protein alone in uninfected cells is sufficient to induce transactivation of the E2F-1 promoter linked to chloramphenicol acetyltransferase or green fluorescent protein reporter genes. Further, expression of the E4-6/7 protein in the context of adenovirus infection induces E2F-1 protein accumulation. Thus, the induction of E2F binding to the E2F-1 promoter by the E4-6/7 protein observed in vitro correlates with transactivation of E2F-1 promoter activity in vivo. These results suggest that adenovirus has evolved two distinct mechanisms to induce the expression of the E2F-1 gene. The E1A proteins displace repressors of E2F activity (the Rb family members) and thus relieve E2F-1 promoter repression; the E4-6/7 protein complements this function by stably recruiting active E2F to the E2F-1 promoter to transactivate expression.


2014 ◽  
Vol 64 (Pt_11) ◽  
pp. 3877-3884 ◽  
Author(s):  
Celine De Maesschalck ◽  
Filip Van Immerseel ◽  
Venessa Eeckhaut ◽  
Siegrid De Baere ◽  
Margo Cnockaert ◽  
...  

Strains LMG 27428T and LMG 27427 were isolated from the caecal content of a chicken and produced butyric, lactic and formic acids as major metabolic end products. The genomic DNA G+C contents of strains LMG 27428T and LMG 27427 were 40.4 and 38.8 mol%. On the basis of 16S rRNA gene sequence similarity, both strains were most closely related to the generically misclassified Streptococcus pleomorphus ATCC 29734T. Strain LMG 27428T could be distinguished from S. pleomorphus ATCC 29734T based on production of more lactic acid and less formic acid in M2GSC medium, a higher DNA G+C content and the absence of activities of acid phosphatase and leucine, arginine, leucyl glycine, pyroglutamic acid, glycine and histidine arylamidases, while strain LMG 27428 was biochemically indistinguishable from S. pleomorphus ATCC 29734T. The novel genus Faecalicoccus gen. nov. within the family Erysipelotrichaceae is proposed to accommodate strains LMG 27428T and LMG 27427. Strain LMG 27428T ( = DSM 26963T) is the type strain of Faecalicoccus acidiformans sp. nov., and strain LMG 27427 ( = DSM 26962) is a strain of Faecalicoccus pleomorphus comb. nov. (type strain LMG 17756T = ATCC 29734T = DSM 20574T). Furthermore, the nearest phylogenetic neighbours of the genus Faecalicoccus are the generically misclassified Eubacterium cylindroides DSM 3983T (94.4 % 16S rRNA gene sequence similarity to strain LMG 27428T) and Eubacterium biforme DSM 3989T (92.7 % 16S rRNA gene sequence similarity to strain LMG 27428T). We present genotypic and phenotypic data that allow the differentiation of each of these taxa and propose to reclassify these generically misnamed species of the genus Eubacterium formally as Faecalitalea cylindroides gen. nov., comb. nov. and Holdemanella biformis gen. nov., comb. nov., respectively. The type strain of Faecalitalea cylindroides is DSM 3983T = ATCC 27803T = JCM 10261T and that of Holdemanella biformis is DSM 3989T = ATCC 27806T = CCUG 28091T.


Sign in / Sign up

Export Citation Format

Share Document