scholarly journals Novel subfamily of mitochondrial HMG box-containing proteins: functional analysis of Gcf1p from Candida albicans

Microbiology ◽  
2009 ◽  
Vol 155 (4) ◽  
pp. 1226-1240 ◽  
Author(s):  
Katarina Visacka ◽  
Joachim M. Gerhold ◽  
Jana Petrovicova ◽  
Slavomir Kinsky ◽  
Priit Jõers ◽  
...  

Mitochondria of eukaryotic organisms contain populations of DNA molecules that are packed into higher-order structures called mitochondrial nucleoids (mt-nucleoids). In Saccharomyces cerevisiae, the compaction of mitochondrial DNA (mtDNA) into mt-nucleoids is mediated primarily by the high-mobility group (HMG) box-containing protein Abf2, which is an important player in stabilization and metabolism of mtDNA. Although it is evident that analogous proteins must exist in other yeast species, an apparently fast divergence rate has precluded their identification, characterization and comparative analysis. Using in silico analysis of the complete genome sequence of the pathogenic yeast Candida albicans we predicted that the ORF 19.400/19.8030 assigned as GCF1 encodes a putative mitochondrial HMG box-containing protein. In contrast to Abf2p, which contains two HMG boxes, Gcf1p contains only one C-terminal HMG box. In addition, it contains one putative coiled-coil domain with a potential role in protein dimerization. Fluorescence microscopy analysis of a C-terminally tagged Gcf1p with green fluorescent protein (GFP) revealed its mitochondrial localization in both heterologous (S. cerevisiae) and native (C. albicans) hosts. Biochemical analyses of DNA-binding properties indicate that Gcf1p is, similarly to Abf2p, a non-specific DNA-binding protein. To analyse the role of Gcf1p in mtDNA metabolism, we constructed strains lacking one functional allele of the GCF1 gene and carrying one GCF1 allele under the control of the MET3 promoter. Under repressible conditions this strain exhibited a more than 3000-fold decrease in levels of GCF1 mRNA, which was correlated with a substantial decrease in the number of mtDNA copies as well as recombination intermediates. The dramatic effect of reduced levels of Gcf1p on mtDNA metabolism indicates that the protein is involved in essential molecular transactions that relate to the mitochondrial genome.

2007 ◽  
Vol 52 (2) ◽  
pp. 694-704 ◽  
Author(s):  
Ritu Pasrija ◽  
Sneh Lata Panwar ◽  
Rajendra Prasad

ABSTRACT In this study, we compared the effects of altered membrane lipid composition on the localization of two membrane drug transporters from different superfamilies of the pathogenic yeast Candida albicans. We demonstrated that in comparison to the major facilitator superfamily multidrug transporter CaMdr1p, ATP-binding cassette transporter CaCdr1p of C. albicans is preferentially localized within detergent-resistant membrane (DRM) microdomains called ‘rafts.’ Both CaCdr1p and CaMdr1p were overexpressed as green fluorescent protein (GFP)-tagged proteins in a heterologous host Saccharomyces cerevisiae, wherein either sphingolipid (Δsur4 or Δfen1 or Δipt1) or ergosterol (Δerg24 or Δerg6 or Δerg4) biosynthesis was compromised. CaCdr1p-GFP, when expressed in the above mutant backgrounds, was not correctly targeted to plasma membranes (PM), which also resulted in severely impaired drug resistance. In contrast, CaMdr1p-GFP displayed no sorting defect in the mutant background and remained properly surface localized and displayed no change in drug resistance. Our data clearly show that CaCdr1p is selectively recruited, over CaMdr1p, to the DRM microdomains of the yeast PM and that any imbalance in the raft lipid constituents results in missorting of CaCdr1p.


2010 ◽  
Vol 30 (5) ◽  
pp. 541-544
Author(s):  
Hui LU ◽  
Ying-ying CAO ◽  
Yan WANG ◽  
Ping-hui GAO ◽  
Yong-bing CAO ◽  
...  

Cells ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1325 ◽  
Author(s):  
Ke Yue ◽  
Tran Nam Trung ◽  
Yiyong Zhu ◽  
Ralf Kaldenhoff ◽  
Lei Kai

Aquaporins are important and well-studied water channel membrane proteins. However, being membrane proteins, sample preparation for functional analysis is tedious and time-consuming. In this paper, we report a new approach for the co-translational insertion of two aquaporins from Escherichia coli and Nicotiana tabacum using the CFPS system. This was done in the presence of liposomes with a modified procedure to form homogenous proteo-liposomes suitable for functional analysis of water permeability using stopped-flow spectrophotometry. Two model aquaporins, AqpZ and NtPIP2;1, were successfully incorporated into the liposome in their active forms. Shifted green fluorescent protein was fused to the C-terminal part of AqpZ to monitor its insertion and status in the lipid environment. This new fast approach offers a fast and straightforward method for the functional analysis of aquaporins in both prokaryotic and eukaryotic organisms.


2021 ◽  
Vol 22 (4) ◽  
pp. 2127
Author(s):  
Jakub Suchodolski ◽  
Anna Krasowska

Candida albicans is a pathogenic fungus that is increasingly developing multidrug resistance (MDR), including resistance to azole drugs such as fluconazole (FLC). This is partially a result of the increased synthesis of membrane efflux transporters Cdr1p, Cdr2p, and Mdr1p. Although all these proteins can export FLC, only Cdr1p is expressed constitutively. In this study, the effect of elevated fructose, as a carbon source, on the MDR was evaluated. It was shown that fructose, elevated in the serum of diabetics, promotes FLC resistance. Using C. albicans strains with green fluorescent protein (GFP) tagged MDR transporters, it was determined that the FLC-resistance phenotype occurs as a result of Mdr1p activation and via the increased induction of higher Cdr1p levels. It was observed that fructose-grown C. albicans cells displayed a high efflux activity of both transporters as opposed to glucose-grown cells, which synthesize Cdr1p but not Mdr1p. Additionally, it was concluded that elevated fructose serum levels induce the de novo production of Mdr1p after 60 min. In combination with glucose, however, fructose induces Mdr1p production as soon as after 30 min. It is proposed that fructose may be one of the biochemical factors responsible for Mdr1p production in C. albicans cells.


2009 ◽  
Vol 9 (1) ◽  
pp. 224-226 ◽  
Author(s):  
Chengda Zhang ◽  
James B. Konopka

ABSTRACT Fusions to the green fluorescent protein (GFP) are an effective way to monitor protein localization. However, altered codon usage in Candida species has delayed implementation of new variants. Examination of three new GFP variants in Candida albicans showed that one has higher signal intensity and increased resistance to photobleaching.


2005 ◽  
Vol 79 (10) ◽  
pp. 6194-6206 ◽  
Author(s):  
Teresa J. Broering ◽  
Michelle M. Arnold ◽  
Cathy L. Miller ◽  
Jessica A. Hurt ◽  
Patricia L. Joyce ◽  
...  

ABSTRACT Mammalian orthoreoviruses are believed to replicate in distinctive, cytoplasmic inclusion bodies, commonly called viral factories or viroplasms. The viral nonstructural protein μNS has been implicated in forming the matrix of these structures, as well as in recruiting other components to them for putative roles in genome replication and particle assembly. In this study, we sought to identify the regions of μNS that are involved in forming factory-like inclusions in transfected cells in the absence of infection or other viral proteins. Sequences in the carboxyl-terminal one-third of the 721-residue μNS protein were linked to this activity. Deletion of as few as eight residues from the carboxyl terminus of μNS resulted in loss of inclusion formation, suggesting that some portion of these residues is required for the phenotype. A region spanning residues 471 to 721 of μNS was the smallest one shown to be sufficient for forming factory-like inclusions. The region from positions 471 to 721 (471-721 region) includes both of two previously predicted coiled-coil segments in μNS, suggesting that one or both of these segments may also be required for inclusion formation. Deletion of the more amino-terminal one of the two predicted coiled-coil segments from the 471-721 region resulted in loss of the phenotype, although replacement of this segment with Aequorea victoria green fluorescent protein, which is known to weakly dimerize, largely restored inclusion formation. Sequences between the two predicted coiled-coil segments were also required for forming factory-like inclusions, and mutation of either one His residue (His570) or one Cys residue (Cys572) within these sequences disrupted the phenotype. The His and Cys residues are part of a small consensus motif that is conserved across μNS homologs from avian orthoreoviruses and aquareoviruses, suggesting this motif may have a common function in these related viruses. The inclusion-forming 471-721 region of μNS was shown to provide a useful platform for the presentation of peptides for studies of protein-protein association through colocalization to factory-like inclusions in transfected cells.


Microbiology ◽  
2003 ◽  
Vol 149 (10) ◽  
pp. 2977-2986 ◽  
Author(s):  
Janet F. Staab ◽  
Yong-Sun Bahn ◽  
Paula Sundstrom

The authors have engineered plasmid constructs for developmental and constitutive expression of yeast-enhanced green fluorescent protein (yEGFP3) in Candida albicans. The promoter for the hyphae-specific gene Hyphal Wall Protein 1 (HWP1) conferred developmental expression of yEGFP3 in germ tubes and hyphae but not in yeasts or pseudohyphae when targeted to the ENO1 (enolase) locus in single copy. The pHWP1GFP3 construct allows for the easy visualization of HWP1 promoter activity in individual cells expressing true hyphae without having to prepare RNA for analysis. Constitutive expression of yEGFP was seen in all cell morphologies when the HWP1 promoter was replaced with the ENO1 promoter region. The use of the plasmids for expression of genes other than yEGFP3 was examined by substituting the putative C. albicans BCY1 (SRA1) gene, a component of the cAMP signalling pathway involved in yeast to hyphae transitions, for yEGFP3. Strains overexpressing BCY1 from the ENO1 promoter were inhibited in germ tube formation and filamentation in both liquid and solid media, a phenotype consistent with keeping protein kinase A in its inactive form by association with Bcy1p. The plasmids are suitable for studies of germ tube induction or assessing germ tube formation by measuring yEGFP3 expression, for inducible expression of genes concomitant with germ tube formation by the HWP1 promoter, for constitutive expression of genes by the ENO1 promoter, and for expressing yEGFP3 using a promoter of choice.


2011 ◽  
Vol 77 (22) ◽  
pp. 8193-8196 ◽  
Author(s):  
Lucja M. Jarosz ◽  
Bastiaan P. Krom

ABSTRACTWe propose a screening method for compounds affecting growth and germination inCandida albicansusing a real-time PCR thermocycler to quantify green fluorescent protein (GFP) fluorescence. Using PACT1-GFPand PHWP1-GFPreporter strains, the effects of a wide range of compounds on growth and hyphal formation were quantitatively assessed within 3 h after inoculation.


Sign in / Sign up

Export Citation Format

Share Document