Growth on mannitol-rich media elicits a genome-wide transcriptional response in Burkholderia multivorans that impacts on multiple virulence traits in an exopolysaccharide-independent manner

Microbiology ◽  
2014 ◽  
Vol 160 (1) ◽  
pp. 187-197 ◽  
Author(s):  
Carmen C. Denman ◽  
Matthew T. Robinson ◽  
Andrea M. Sass ◽  
Eshwar Mahenthiralingam ◽  
Alan R. Brown

In common with other members of the Burkholderia cepacia complex (BCC), Burkholderia multivorans is capable of producing exopolysaccharide (EPS) when grown on certain mannitol-rich media. The significance of the resulting mucoid phenotype and the genome-wide response to mannitol has never been characterized despite its clinical relevance following the approval of a dried-powder preparation of mannitol as an inhaled osmolyte therapy for cystic fibrosis (CF) patients. In the present study we defined the transcriptional response of B. multivorans ATCC 17616, a model genome-sequenced strain of environmental origin, to growth on mannitol-rich yeast extract media (MYEM). EPS-dependent and -independent impact of MYEM on virulence-associated traits was assessed in both strain ATCC 17616 and the CF isolate B. multivorans C1576. Our studies revealed a significant transcriptional response to MYEM encompassing approximately 23 % of predicted genes within the genome. Strikingly, this transcriptional response identified that EPS induction occurs in ATCC 17616 without the upregulation of the bce-I and bce-II EPS gene clusters, despite their pivotal role in EPS biosynthesis. Of approximately 20 differentially expressed putative virulence factors, 16 exhibited upregulation including flagella, ornibactin, oxidative stress proteins and phospholipases. MYEM-grown B. multivorans also exhibited enhanced motility, biofilm formation and epithelial cell invasion. In contrast to these potential virulence enhancements, MYEM-grown B. multivorans C1576 showed attenuated virulence in the Galleria mellonella infection model. All of the observed phenotypic responses occurred independently of EPS production, highlighting the profound impact that mannitol-based growth has on the physiology and virulence of B. multivorans.

Microbiology ◽  
2011 ◽  
Vol 157 (11) ◽  
pp. 3124-3137 ◽  
Author(s):  
Inês N. Silva ◽  
Ana S. Ferreira ◽  
Jörg D. Becker ◽  
James E. A. Zlosnik ◽  
David P. Speert ◽  
...  

Burkholderia cepacia complex (Bcc) bacteria are opportunistic pathogens infecting hosts such as cystic fibrosis (CF) patients. Long-term Bcc infection of CF patients’ airways has been associated with emergence of phenotypic variation. Here we studied two Burkholderia multivorans clonal isolates displaying different morphotypes from a chronically infected CF patient to evaluate trait development during lung infection. Expression profiling of mucoid D2095 and non-mucoid D2214 isolates revealed decreased expression of genes encoding products related to virulence-associated traits and metabolism in D2214. Furthermore, D2214 showed no exopolysaccharide production, lower motility and chemotaxis, and more biofilm formation, particularly under microaerophilic conditions, than the clonal mucoid isolate D2095. When Galleria mellonella was used as acute infection model, D2214 at a cell number of approximately 7×106 c.f.u. caused a higher survival rate than D2095, although 6 days post-infection most of the larvae were dead. Infection with the same number of cells by mucoid D2095 caused larval death by day 4. The decreased expression of genes involved in carbon and nitrogen metabolism may reflect lower metabolic needs of D2214 caused by lack of exopolysaccharide, but also by the attenuation of pathways not required for survival. As a result, D2214 showed higher survival than D2095 in minimal medium for 28 days under aerobic conditions. Overall, adaptation during Bcc chronic lung infections gave rise to genotypic and phenotypic variation among isolates, contributing to their fitness while maintaining their capacity for survival in this opportunistic human niche.


2018 ◽  
Author(s):  
Julio Diaz Caballero ◽  
Shawn T. Clark ◽  
Pauline W. Wang ◽  
Sylva L. Donaldson ◽  
Bryan Coburn ◽  
...  

AbstractCystic fibrosis (CF) lung infections caused by members of the Burkholderia cepacia complex, such as Burkholderia multivorans, are associated with high rates of mortality and morbidity. We performed a population genomic study of 111 B. multivorans sputum isolates from a single CF patient through three stages of infection including the initial incident infection, deep sampling of a one-year period of chronic infection, and deep sampling of a post-transplant recolonization. We reconstructed the evolutionary history of the population and used a lineage-controlled genome-wide association study (GWAS) approach to identify genetic variants associated with antibiotic resistance. We found that the incident isolate was more susceptible to agents from three antimicrobial classes (β-lactams, aminoglycosides, quinolones), while the chronic isolates diversified into distinct genetic lineages with reduced antimicrobial susceptibility to the same agents. The post-transplant reinfection isolates displayed genetic and phenotypic signatures that were distinct from sputum isolates from all CF lung specimens. There were numerous examples of parallel pathoadaptation, in which individual loci, or even the same codon, were independently mutated multiple times. This set of loci was enriched for functions associated with virulence and resistance. Our GWAS approach identified one variant in the ampD locus (which was independently mutated four times in our dataset) associated with resistance to β-lactams, and two non-synonymous polymorphisms associated with resistance to both aminoglycosides and quinolones, affecting an araC family transcriptional regulator, which was independently mutated three times, and an outer member porin, which was independently mutated twice. We also performed recombination analysis and identified a minimum of 14 recombination events. Parallel pathoadaptive loci and polymorphisms associated with β-lactam resistance were over-represented in these recombinogenic regions. This study illustrates the power of deep, longitudinal sampling coupled with evolutionary and lineage-corrected GWAS analyses to reveal how pathogens adapt to their hosts.


BMC Genomics ◽  
2009 ◽  
Vol 10 (1) ◽  
pp. 396 ◽  
Author(s):  
Trine B Rounge ◽  
Thomas Rohrlack ◽  
Alexander J Nederbragt ◽  
Tom Kristensen ◽  
Kjetill S Jakobsen

2003 ◽  
Vol 71 (9) ◽  
pp. 5306-5313 ◽  
Author(s):  
Steve P. Bernier ◽  
Laura Silo-Suh ◽  
Donald E. Woods ◽  
Dennis E. Ohman ◽  
Pamela A. Sokol

ABSTRACT A simple alfalfa model was developed as an alternative infection model for virulence studies of the Burkholderia cepacia complex. Symptoms of disease were observed in wounded alfalfa seedlings within 7 days following inoculation of 101 to 105 CFU of most strains of the B. cepacia complex. Strains from seven genomovars of the B. cepacia complex were tested for virulence in the alfalfa model, and the degree of virulence was generally similar in strains belonging to the same genomovar. Strains of Burkholderia multivorans and some strains of Burkholderia stabilis did not cause symptoms of disease in alfalfa seedlings. Representative strains were also tested for virulence using the rat agar bead model. Most of the strains tested were able to establish chronic lung infections; B. stabilis strains were the exception. Most of the strains that were virulent in the alfalfa infection model were also virulent in the lung infection model. The B. cepacia genomovar III mutants K56pvdA::tp and K56-H15 were significantly less virulent in the alfalfa infection model than their parent strain. Therefore, this alfalfa infection model may be a useful tool for assessing virulence of strains of the B. cepacia complex and identifying new virulence-associated genes.


2016 ◽  
Author(s):  
Maria Tsochatzidou ◽  
Maria Malliarou ◽  
Nikolas Papanikolaou ◽  
Joaquim Roca ◽  
Christoforos Nikolaou

AbstractThe eukaryotic genome evolves under the dual constraint of maintaining co-ordinated gene transcription and performing effective DNA replication and cell division, the coupling of which brings about inevitable DNA topological tension. DNA supercoiling is resolved and, in some cases, even harnessed by the genome through the function of DNA topoisomerases, as has been shown in the concurrent transcriptional activation and suppression of genes upon transient deactivation of topoisomerase II (topoII). By analyzing a genome wide run-on experiment upon thermal inactivation of topoII in S.cerevisiae. we were able to define 116 gene clusters of consistent response (either positive or negative) to topological stress. A comprehensive analysis of these topologically co-regulated gene clusters revealed pronounced preferences regarding their functional, regulatory and structural attributes. Genes that negatively respond to topological stress, are positioned in gene-dense pericentromeric regions, are more conserved and associated to essential functions, while up-regulated gene clusters are preferentially located in the gene-sparse nuclear periphery, associated with secondary functions and under complex regulatory control. We propose that evolves with a core of essential genes occupying a compact genomic “old town”, whereas more recently acquired, condition-specific genes tend to be located in a more spacious “suburban” genomic periphery.


2019 ◽  
Author(s):  
Rebecca Yee ◽  
Jie Feng ◽  
Jiou Wang ◽  
Jiazhen Chen ◽  
Ying Zhang

AbstractStaphylococcus aureusis an opportunistic pathogen that causes acute and chronic infections. Due toS. aureus’ s highly resistant and persistent nature, it is paramount to identify better drug targets in order to eradicateS. aureusinfections. Despite the efforts in understanding bacterial cell death, the genes and pathways ofS. aureuscell death remain elusive. Here, we performed a genome-wide screen using a transposon mutant library to study the genetic mechanisms involved inS. aureuscell death. Using a precisely controlled heat-ramp and acetic acid exposure assays, mutations in 27 core genes (hsdR1, hslO, nsaS, sspA, folD, mfd, vraF, kdpB, USA300HOU_2684, 0868, 0369, 0420, 1154, 0142, 0930, 2590, 0997, 2559, 0044, 2004, 1209, 0152, 2455, 0154, 2386, 0232, 0350 involved in transporters, transcription, metabolism, peptidases, kinases, transferases, SOS response, nucleic acid and protein synthesis) caused the bacteria to be more death-resistant. In addition, we identified mutations in core 10 genes (capA, gltT, mnhG1,USA300HOU_1780, 2496, 0200, 2029, 0336, 0329, 2386, involved in transporters, metabolism, transcription, cell wall synthesis) from heat-ramp and acetic acid that caused the bacteria to be more death-sensitive or with defect in persistence. Interestingly, death-resistant mutants were more virulent than the parental strain USA300 and caused increased mortality in aCaenorhabditis elegansinfection model. Conversely, death-sensitive mutants were less persistent and formed less persister cells upon exposure to different classes of antibiotics. These findings provide new insights into the mechanisms ofS. aureuscell death and offer new therapeutic targets for developing more effective treatments caused byS. aureus.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sara Skøtt Paulsen ◽  
Thomas Isbrandt ◽  
Markus Kirkegaard ◽  
Yannick Buijs ◽  
Mikael Lenz Strube ◽  
...  

AbstractNovel antimicrobials are urgently needed due to the rapid spread of antibiotic resistant bacteria. In a genome-wide analysis of Pseudoalteromonas strains, one strain (S4498) was noticed due to its potent antibiotic activity. It did not produce the yellow antimicrobial pigment bromoalterochromide, which was produced by several related type strains with which it shared less than 95% average nucleotide identity. Also, it produced a sweet-smelling volatile not observed from other strains. Mining the genome of strain S4498 using the secondary metabolite prediction tool antiSMASH led to eight biosynthetic gene clusters with no homology to known compounds, and synteny analyses revealed that the yellow pigment bromoalterochromide was likely lost during evolution. Metabolome profiling of strain S4498 using HPLC-HRMS analyses revealed marked differences to the type strains. In particular, a series of quinolones known as pseudanes were identified and verified by NMR. The characteristic odor of the strain was linked to the pseudanes. The highly halogenated compound tetrabromopyrrole was detected as the major antibacterial component by bioassay-guided fractionation. Taken together, the polyphasic analysis demonstrates that strain S4498 belongs to a novel species within the genus Pseudoalteromonas, and we propose the name Pseudoalteromonas galatheae sp. nov. (type strain S4498T = NCIMB 15250T = LMG 31599T).


2007 ◽  
Vol 189 (21) ◽  
pp. 7799-7807 ◽  
Author(s):  
M. M. Vickerman ◽  
S. Iobst ◽  
A. M. Jesionowski ◽  
S. R. Gill

ABSTRACT Streptococcus gordonii is a primary colonizer of the multispecies biofilm on tooth surfaces forming dental plaque and a potential agent of endocarditis. The recent completion of the genome sequence of the naturally competent strain Challis allowed the design of a spotted oligonucleotide microarray to examine a genome-wide response of this organism to environmental stimuli such as signal peptides. Based on temporal responses to synthetic competence signaling peptide (CSP) as indicated by transformation frequencies, the S. gordonii transcriptome was analyzed at various time points after CSP exposure. Microarray analysis identified 35 candidate early genes and 127 candidate late genes that were up-regulated at 5 and 15 min, respectively; these genes were often grouped in clusters. Results supported published findings on S. gordonii competence, showing up-regulation of 12 of 16 genes that have been reported to affect transformation frequencies in this species. Comparison of CSP-induced S. gordonii transcriptomes to results published for Streptococcus pneumoniae strains identified both conserved and species-specific genes. Putative intergenic regulatory sites, such as the conserved combox sequence thought to be a binding site for competence sigma factor, were found preceding S. gordonii late responsive genes. In contrast, S. gordonii early CSP-responsive genes were not preceded by the direct repeats found in S. pneumoniae. These studies provide the first insights into a genome-wide transcriptional response of an oral commensal organism. They offer an extensive analysis of transcriptional changes that accompany competence in S. gordonii and form a basis for future intra- and interspecies comparative analyses of this ecologically important phenotype.


2020 ◽  
Vol 104 (22) ◽  
pp. 9801-9822
Author(s):  
Andreas Schüller ◽  
Lisa Wolansky ◽  
Harald Berger ◽  
Lena Studt ◽  
Agnieszka Gacek-Matthews ◽  
...  

Abstract Programmable transcriptional regulation is a powerful tool to study gene functions. Current methods to selectively regulate target genes are mainly based on promoter exchange or on overexpressing transcriptional activators. To expand the discovery toolbox, we designed a dCas9-based RNA-guided synthetic transcription activation system for Aspergillus nidulans that uses enzymatically disabled “dead” Cas9 fused to three consecutive activation domains (VPR-dCas9). The dCas9-encoding gene is under the control of an estrogen-responsive promoter to allow induction timing and to avoid possible negative effects by strong constitutive expression of the highly active VPR domains. Especially in silent genomic regions, facultative heterochromatin and strictly positioned nucleosomes can constitute a relevant obstacle to the transcriptional machinery. To avoid this negative impact and to facilitate optimal positioning of RNA-guided VPR-dCas9 to targeted promoters, we have created a genome-wide nucleosome map from actively growing cells and stationary cultures to identify the cognate nucleosome-free regions (NFRs). Based on these maps, different single-guide RNAs (sgRNAs) were designed and tested for their targeting and activation potential. Our results demonstrate that the system can be used to regulate several genes in parallel and, depending on the VPR-dCas9 positioning, expression can be pushed to very high levels. We have used the system to turn on individual genes within two different biosynthetic gene clusters (BGCs) which are silent under normal growth conditions. This method also opens opportunities to stepwise activate individual genes in a cluster to decipher the correlated biosynthetic pathway. Keypoints • An inducible RNA-guided transcriptional regulator based on VPR-dCas9 was established in Aspergillus nidulans. • Genome-wide nucleosome positioning maps were created that facilitate sgRNA positioning. • The system was successfully applied to activate genes within two silent biosynthetic gene clusters.


Sign in / Sign up

Export Citation Format

Share Document