Reconstruction of the evolutionary history of the LexA-binding sequence

Microbiology ◽  
2004 ◽  
Vol 150 (11) ◽  
pp. 3783-3795 ◽  
Author(s):  
Gerard Mazón ◽  
Ivan Erill ◽  
Susana Campoy ◽  
Pilar Cortés ◽  
Evelyne Forano ◽  
...  

In recent years, the recognition sequence of the SOS repressor LexA protein has been identified for several bacterial clades, such as the Gram-positive, green non-sulfur bacteria and Cyanobacteria phyla, or the ‘Alphaproteobacteria’, ‘Deltaproteobacteria’ and ‘Gammaproteobacteria’ classes. Nevertheless, the evolutionary relationship among these sequences and the proteins that recognize them has not been analysed. Fibrobacter succinogenes is an anaerobic Gram-negative bacterium that branched from a common bacterial ancestor immediately before the Proteobacteria phylum. Taking advantage of its intermediate position in the phylogenetic tree, and in an effort to reconstruct the evolutionary history of LexA-binding sequences, the F. succinogenes lexA gene has been isolated and its product purified to identify its DNA recognition motif through electrophoretic mobility assays and footprinting experiments. After comparing the available LexA DNA-binding sequences with the F. succinogenes one, reported here, directed mutagenesis of the F. succinogenes LexA-binding sequence and phylogenetic analyses of LexA proteins have revealed the existence of two independent evolutionary lanes for the LexA recognition motif that emerged from the Gram-positive box: one generating the Cyanobacteria and ‘Alphaproteobacteria’ LexA-binding sequences, and the other giving rise to the F. succinogenes and Myxococcus xanthus ones, in a transitional step towards the current ‘Gammaproteobacteria’ LexA box. The contrast between the results reported here and the phylogenetic data available in the literature suggests that, some time after its emergence as a distinct bacterial class, the ‘Alphaproteobacteria’ lost its vertically received lexA gene, but received later through lateral gene transfer a new lexA gene belonging to either a cyanobacterium or a bacterial species closely related to this phylum. This constitutes the first report based on experimental evidence of lateral gene transfer in the evolution of a gene governing such a complex regulatory network as the bacterial SOS system.

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Miguel Romero ◽  
R. Cerritos ◽  
Cecilia Ximenez

Horizontal gene transfer has proved to be relevant in eukaryotic evolution, as it has been found more often than expected and related to adaptation to certain niches. A relatively large list of laterally transferred genes has been proposed and evaluated for the parasiteEntamoeba histolytica. The goals of this work were to elucidate the importance of lateral gene transfer along the evolutionary history of some members of the genusEntamoeba, through identifying donor groups and estimating the divergence time of some of these events. In order to estimate the divergence time of some of the horizontal gene transfer events, the dating of someEntamoebaspecies was necessary, following an indirect dating strategy based on the fossil record of plausible hosts. The divergence betweenE. histolyticaandE. nuttalliiprobably occurred 5.93 million years ago (Mya); this lineage diverged fromE. dispar9.97 Mya, while the ancestor of the latter separated fromE. invadens68.18 Mya. We estimated times for 22 transferences; the most recent occurred 31.45 Mya and the oldest 253.59 Mya. Indeed, the acquisition of genes through lateral transfer may have triggered a period of adaptive radiation, thus playing a major role in the evolution of theEntamoebagenus.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Masahiko Muraji ◽  
Norio Arakaki ◽  
Shigeo Tanizaki

The phylogenetic relationship, biogeography, and evolutionary history of closely related two firefly species,Curtos costipennisandC. okinawanus, distributed in the Ryukyu Islands of Japan were examined based on nucleotide sequences of mitochondrial (2.2 kb long) and nuclear (1.1-1.2 kb long) DNAs. In these analyses, individuals were divided among three genetically distinct local groups,C. costipennisin the Amami region,C. okinawanusin the Okinawa region, andC. costipennisin the Sakishima region. Their mtDNA sequences suggested that ancestralC. costipennispopulation was first separated between the Central and Southern Ryukyu areas, and the northern half was then subdivided betweenC. costipennisin the Amami andC. okinawanusin the Okinawa. The application of the molecular evolutionary clocks of coleopteran insects indicated that their vicariance occurred 1.0–1.4 million years ago, suggesting the influence of submergence and subdivision of a paleopeninsula extending between the Ryukyu Islands and continental China through Taiwan in the early Pleistocene.


2021 ◽  
pp. 53-63
Author(s):  
Franklin M. Harold

The contemporary view of evolution crystallized in the mid-20th century in a hard-edged form that puts genes central: It sees organisms as vehicles for their genes, the material basis of the instructions encoded therein. Heredity, variation, natural selection, and adaptation all result from events that take place at the gene level. Organisms evolve by small mutational steps, never by sudden jumps. Mutations occur at random, not in response to need. Acquired characteristics are never inherited. Ongoing research challenges all these premises, and reinforces the criticism that the received doctrine is too narrow. Two important sources of novelty are lateral gene transfer across all boundaries, and the creation of new patterns of order by symbiosis. (The origin and history of the eukaryotic cell is a prime example.) In the renovated synthesis now emerging, genes retain their hold on organismal identity that is passed from parents to offspring and not easily altered. But this genetic framework is supplemented by a variety of more cellular mechanisms to acquire new traits, making cells more flexible and cohesive than imagined in classical theory.


Symbiosis ◽  
2020 ◽  
Vol 80 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Ewa Sajnaga ◽  
Waldemar Kazimierczak

AbstractEntomopathogenic bacteria from the genera Photorhabdus and Xenorhabdus are closely related Gram-negative bacilli from the family Enterobacteriaceae (γ-Proteobacteria). They establish obligate mutualistic associations with soil nematodes from the genera Steinernema and Heterorhabditis to facilitate insect pathogenesis. The research of these two bacterial genera is focused mainly on their unique interactions with two different animal hosts, i.e. nematodes and insects. So far, studies of the mutualistic bacteria of nematodes collected from around the world have contributed to an increase in the number of the described Xenorhabdus and Photorhabdus species. Recently, the classification system of entomopatogenic nematode microsymbionts has undergone profound revision and now 26 species of the genus Xenorhabdus and 19 species of the genus Photorhabdus have been identified. Despite their similar life style and close phylogenetic origin, Photorhabdus and Xenorhabdus bacterial species differ significantly in e.g. the nematode host range, symbiotic strategies for parasite success, and arrays of released antibiotics and insecticidal toxins. As the knowledge of the diversity of entomopathogenic nematode microsymbionts helps to enable the use thereof, assessment of the phylogenetic relationships of these astounding bacterial genera is now a major challenge for researchers. The present article summarizes the main information on the taxonomy and evolutionary history of Xenorhabdus and Photorhabdus, entomopathogenic nematode symbionts.


2002 ◽  
Vol 184 (1) ◽  
pp. 278-289 ◽  
Author(s):  
Michael W. Friedrich

ABSTRACT Lateral gene transfer affects the evolutionary path of key genes involved in ancient metabolic traits, such as sulfate respiration, even more than previously expected. In this study, the phylogeny of the adenosine-5′-phosphosulfate (APS) reductase was analyzed. APS reductase is a key enzyme in sulfate respiration present in all sulfate-respiring prokaryotes. A newly developed PCR assay was used to amplify and sequence a fragment (∼900 bp) of the APS reductase gene, apsA, from a taxonomically wide range of sulfate-reducing prokaryotes (n = 60). Comparative phylogenetic analysis of all obtained and available ApsA sequences indicated a high degree of sequence conservation in the region analyzed. However, a comparison of ApsA- and 16S rRNA-based phylogenetic trees revealed topological incongruences affecting seven members of the Syntrophobacteraceae and three members of the Nitrospinaceae, which were clearly monophyletic with gram-positive sulfate-reducing bacteria (SRB). In addition, Thermodesulfovibrio islandicus and Thermodesulfobacterium thermophilum, Thermodesulfobacterium commune, and Thermodesulfobacterium hveragerdense clearly branched off between the radiation of the δ-proteobacterial gram-negative SRB and the gram-positive SRB and not close to the root of the tree as expected from 16S rRNA phylogeny. The most parsimonious explanation for these discrepancies in tree topologies is lateral transfer of apsA genes across bacterial divisions. Similar patterns of insertions and deletions in ApsA sequences of donor and recipient lineages provide additional evidence for lateral gene transfer. From a subset of reference strains (n = 25), a fragment of the dissimilatory sulfite reductase genes (dsrAB), which have recently been proposed to have undergone multiple lateral gene transfers (M. Klein et al., J. Bacteriol. 183:6028–6035, 2001), was also amplified and sequenced. Phylogenetic comparison of DsrAB- and ApsA-based trees suggests a frequent involvement of gram-positive and thermophilic SRB in lateral gene transfer events among SRB.


2020 ◽  
Vol 202 (24) ◽  
Author(s):  
Emily M. Kibby ◽  
Aaron T. Whiteley

ABSTRACT The arms race between bacteria and their competitors has produced an astounding variety of conflict systems that are shared via horizontal gene transfer across bacterial populations. In this issue of the Journal of Bacteriology, Burroughs and Aravind investigate how these biological conflict systems have been mixed and matched into new configurations, often with novel protein domains (A. M. Burroughs and L. Aravind, J Bacteriol 202:e00365-20, 2020, https://doi.org/10.1128/JB.00365-20). The authors additionally characterize the evolutionary history of genes in eukaryotes that appear to have been acquired from these prokaryotic defense systems.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0239248 ◽  
Author(s):  
Lewis M. Ward ◽  
Patrick M. Shih

Photosynthesis—both oxygenic and more ancient anoxygenic forms—has fueled the bulk of primary productivity on Earth since it first evolved more than 3.4 billion years ago. However, the early evolutionary history of photosynthesis has been challenging to interpret due to the sparse, scattered distribution of metabolic pathways associated with photosynthesis, long timescales of evolution, and poor sampling of the true environmental diversity of photosynthetic bacteria. Here, we reconsider longstanding hypotheses for the evolutionary history of phototrophy by leveraging recent advances in metagenomic sequencing and phylogenetics to analyze relationships among phototrophic organisms and components of their photosynthesis pathways, including reaction centers and individual proteins and complexes involved in the multi-step synthesis of (bacterio)-chlorophyll pigments. We demonstrate that components of the photosynthetic apparatus have undergone extensive, independent histories of horizontal gene transfer. This suggests an evolutionary mode by which modular components of phototrophy are exchanged between diverse taxa in a piecemeal process that has led to biochemical innovation. We hypothesize that the evolution of extant anoxygenic photosynthetic bacteria has been spurred by ecological competition and restricted niches following the evolution of oxygenic Cyanobacteria and the accumulation of O2 in the atmosphere, leading to the relatively late evolution of bacteriochlorophyll pigments and the radiation of diverse crown group anoxygenic phototrophs. This hypothesis expands on the classic “Granick hypothesis” for the stepwise evolution of biochemical pathways, synthesizing recent expansion in our understanding of the diversity of phototrophic organisms as well as their evolving ecological context through Earth history.


Author(s):  
Lewis M. Ward ◽  
Patrick M. Shih

AbstractPhotosynthesis—both oxygenic and more ancient anoxygenic forms—has fueled the bulk of primary productivity on Earth since it first evolved more than 3.4 billion years ago. However, the early evolutionary history of photosynthesis has been challenging to interpret due to the sparse, scattered distribution of metabolic pathways associated with photosynthesis, long timescales of evolution, and poor sampling of the true environmental diversity of photosynthetic bacteria. Here, we reconsider longstanding hypotheses for the evolutionary history of phototrophy by leveraging recent advances in metagenomic sequencing and phylogenetics to analyze relationships among phototrophic organisms and components of their photosynthesis pathways, including reaction centers and individual proteins and complexes involved in the multi-step synthesis of (bacterio)-chlorophyll pigments. We demonstrate that components of the photosynthetic apparatus have undergone extensive, independent histories of horizontal gene transfer. This suggests an evolutionary mode by which modular components of phototrophy are exchanged between diverse taxa in a piecemeal process that has led to biochemical innovation. We hypothesize that the evolution of extant anoxygenic photosynthetic bacteria has been spurred by ecological competition and restricted niches following the evolution of oxygenic Cyanobacteria and the accumulation of O2 in the atmosphere, leading to the relatively late evolution of bacteriochlorophyll pigments and the radiation of diverse crown group anoxygenic phototrophs. This hypothesis expands on the classic “Granick hypothesis” for the stepwise evolution of biochemical pathways, synthesizing recent expansion in our understanding of the diversity of phototrophic organisms as well as their evolving ecological context through Earth history.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Er-meng Yu ◽  
Tatsuki Yoshinaga ◽  
Frank L. Jalufka ◽  
Hashimul Ehsan ◽  
David B. Mark Welch ◽  
...  

AbstractThe metazoan 70-kDa heat shock protein (HSP70) family contains several members localized in different subcellular compartments. The cytosolic members have been classified into inducible HSP70s and constitutive heat shock cognates (HSC70s), but their distinction and evolutionary relationship remain unclear because of occasional reports of “constitutive HSP70s” and the lack of cross-phylum comparisons. Here we provide novel insights into the evolution of these important molecular chaperones. Phylogenetic analyses of 125 full-length HSP70s from a broad range of phyla revealed an ancient duplication that gave rise to two lineages from which all metazoan cytosolic HSP70s descend. One lineage (A) contains a relatively small number of genes from many invertebrate phyla, none of which have been shown to be constitutively expressed (i.e., either inducible or unknown). The other lineage (B) included both inducible and constitutive genes from diverse phyla. Species-specific duplications are present in both lineages, and Lineage B contains well-supported phylum-specific clades for Platyhelminthes, Rotifera, Nematoda, Porifera/Cnidaria, and Chordata. Some genes in Lineage B have likely independently acquired inducibility, which may explain the sporadic distribution of “HSP70” or “HSC70” in previous phylogenetic analyses. Consistent with the diversification history within each group, inducible members show lower purifying selection pressure compared to constitutive members. These results illustrate the evolutionary history of the HSP70 family, encouraging us to propose a new nomenclature: “HSP70 + subcellular localization + linage + copy number in the organism + inducible or constitutive, if known.” e.g., HSP70cA1i for cytosolic Lineage A, copy 1, inducible.


2012 ◽  
Vol 12 (1) ◽  
pp. 226 ◽  
Author(s):  
Céline Petitjean ◽  
David Moreira ◽  
Purificación López-García ◽  
Céline Brochier-Armanet

Sign in / Sign up

Export Citation Format

Share Document