scholarly journals Fluorescence assays for F-pili and their application

Microbiology ◽  
2005 ◽  
Vol 151 (11) ◽  
pp. 3541-3548 ◽  
Author(s):  
Katrin Daehnel ◽  
Robin Harris ◽  
Lucinda Maddera ◽  
Philip Silverman

Conjugative pili are extracellular filaments elaborated by Gram-negative bacteria expressing certain type IV secretion systems. They are required at the earliest stages of conjugal DNA transfer to establish specific and secure cell–cell contacts. Conjugative pili also serve as adsorption organelles for both RNA and DNA bacteriophages. Beyond these facts, the structure, formation and function of these filaments are poorly understood. This paper describes a rapid, quantitative assay for F-pili encoded by the F plasmid type IV secretion system. The assay is based on the specific lateral adsorption of icosahedral RNA bacteriophage R17 by F-pili. Bacteriophage particles conjugated with a fluorescent dye, Alexa 488, and bound to F-pili defined filaments visible by immunofluorescence microscopy. F-pili attached to F+ cells and free F-pili were both visible by this method. For quantification, cell-bound bacteriophage were separated from free bacteriophage particles by sedimentation and released by suspending cell pellets in 0·1 % SDS. Fluorescence in cell-free supernatant fractions was measured by fluorometry. The authors present a characterization of this assay and its application to F-pilus formation by cells carrying mutations in the gene for the F-pilus subunit F-pilin. Each mutation introduced a cysteine, which F-pilin normally lacks, at a different position in its primary structure. Cysteine residues in the N-terminal domain I abolished filament formation as measured by fluorescent R17 binding. This was confirmed by measurements of DNA donor activity and filamentous DNA bacteriophage infection. With one exception (G53C), cysteines elsewhere in the F-pilin primary structure did not abolish filament formation, although some mutations differentially affected F-pilus functions.

2009 ◽  
Vol 191 (9) ◽  
pp. 2985-2992 ◽  
Author(s):  
Gisèle Bourg ◽  
Romain Sube ◽  
David O'Callaghan ◽  
Gilles Patey

ABSTRACT The proteinVirB8 plays a critical role in the assembly and function of the Agrobacterium tumefaciens virB type IV secretion system (T4SS). The structure of the periplasmic domain of both A. tumefaciens and Brucella suis VirB8 has been determined, and site-directed mutagenesis has revealed amino acids involved in the dimerization of VirB8 and interactions with VirB4 and VirB10. We have shown previously that TraJ, the VirB8 homologue from pSB102, and the chimeric protein TraJB8, encompassing the cytoplasmic and transmembrane (TM) domains of TraJ and the periplasmic domain of VirB8, were unable to complement a B. suis mutant containing an in-frame deletion of the virB8 gene. This suggested that the presence of the TraJ cytoplasmic and TM domains could block VirB8 dimerization or assembly in the inner membrane. By bacterial two-hybrid analysis, we found that VirB8, TraJ, and the chimeras can all interact to form both homo- and heterodimers. However, the presence of the TM domain of TraJ resulted in much stronger interactions in both the homo- and heterodimers. We expressed the wild-type and chimeric proteins in wild-type B. suis. The presence of proteins carrying the TM domain of TraJ had a dominant negative effect, leading to complete loss of virulence. This suggests that the T4SS is a dynamic structure and that strong interactions block the spatial flexibility required for correct assembly and function.


1998 ◽  
Vol 180 (23) ◽  
pp. 6164-6172 ◽  
Author(s):  
Pei-Li Li ◽  
Dawn M. Everhart ◽  
Stephen K. Farrand

ABSTRACT Conjugal transfer of pTiC58 requires two regions, trawhich contains the oriT and several genes involved in DNA processing and a region of undefined size and function that is located at the 2-o’clock position of the plasmid. Using transposon mutagenesis with Tn3HoHo1 and a binary transfer system, we delimited this second region, called trb, to an 11-kb interval between the loci for vegetative replication and nopaline catabolism. DNA sequence analysis of this region identified 13 significant open reading frames (ORFs) spanning 11,003 bp. The first, encodingtraI, already has been described and is responsible for the synthesis of Agrobacterium autoinducer (AAI) (I. Hwang, P.-L. Li, L. Zhang, K. R. Piper, D. M. Cook, M. E. Tate, and S. K. Farrand, Proc. Natl. Acad. Sci. USA 91:4639–4643, 1994). Translation products of the next 11 ORFs showed similarities to those of trbB, -C, -D,-E, -J, -K, -L,-F, -G, -H, and -I of the trb region of the octopine-type Ti plasmid pTi15955 and of the tra2 core region of RP4. In RP4, these genes encode mating-pair formation functions and are essential for the conjugal transfer of the IncP plasmid. Each of the trb gene homologues is oriented counterclockwise on the Ti plasmid. Expression of these genes, as measured by using the lacZ fusions formed by Tn3HoHo1, required the traI promoter and the transcriptional activator TraR along with its coinducer, AAI. While related to that of RP4, the trb system of pTiC58 did not allow propagation of the trb-specific bacteriophages PRD1, PRR1, and Pf3. The products of several trb genes of the Ti plasmid are similar to those of other loci that encode DNA transfer or protein secretion systems, all of which are members of the type IV secretion family.


2005 ◽  
Vol 59 (1) ◽  
pp. 451-485 ◽  
Author(s):  
Peter J. Christie ◽  
Krishnamohan Atmakuri ◽  
Vidhya Krishnamoorthy ◽  
Simon Jakubowski ◽  
Eric Cascales

2010 ◽  
Vol 74 (3) ◽  
pp. 434-452 ◽  
Author(s):  
Chris Smillie ◽  
M. Pilar Garcillán-Barcia ◽  
M. Victoria Francia ◽  
Eduardo P. C. Rocha ◽  
Fernando de la Cruz

SUMMARY Plasmids are key vectors of horizontal gene transfer and essential genetic engineering tools. They code for genes involved in many aspects of microbial biology, including detoxication, virulence, ecological interactions, and antibiotic resistance. While many studies have decorticated the mechanisms of mobility in model plasmids, the identification and characterization of plasmid mobility from genome data are unexplored. By reviewing the available data and literature, we established a computational protocol to identify and classify conjugation and mobilization genetic modules in 1,730 plasmids. This allowed the accurate classification of proteobacterial conjugative or mobilizable systems in a combination of four mating pair formation and six relaxase families. The available evidence suggests that half of the plasmids are nonmobilizable and that half of the remaining plasmids are conjugative. Some conjugative systems are much more abundant than others and preferably associated with some clades or plasmid sizes. Most very large plasmids are nonmobilizable, with evidence of ongoing domestication into secondary chromosomes. The evolution of conjugation elements shows ancient divergence between mobility systems, with relaxases and type IV coupling proteins (T4CPs) often following separate paths from type IV secretion systems. Phylogenetic patterns of mobility proteins are consistent with the phylogeny of the host prokaryotes, suggesting that plasmid mobility is in general circumscribed within large clades. Our survey suggests the existence of unsuspected new relaxases in archaea and new conjugation systems in cyanobacteria and actinobacteria. Few genes, e.g., T4CPs, relaxases, and VirB4, are at the core of plasmid conjugation, and together with accessory genes, they have evolved into specific systems adapted to specific physiological and ecological contexts.


Microbiology ◽  
2009 ◽  
Vol 155 (12) ◽  
pp. 4005-4013 ◽  
Author(s):  
Ruifu Zhang ◽  
John J. LiPuma ◽  
Carlos F. Gonzalez

Bacterial type IV secretion systems (T4SS) perform two fundamental functions related to pathogenesis: the delivery of effector molecules to eukaryotic target cells, and genetic exchange. Two T4SSs have been identified in Burkholderia cenocepacia K56-2, a representative of the ET12 lineage of the B. cepacia complex (Bcc). The plant tissue watersoaking (Ptw) T4SS encoded on a resident 92 kb plasmid is a chimera composed of VirB/D4 and F-specific subunits, and is responsible for the translocation of effector(s) that have been linked to the Ptw phenotype. The bc-VirB/D4 system located on chromosome II displays homology to the VirB/D4 T4SS of Agrobacterium tumefaciens. In contrast to the Ptw T4SS, the bc-VirB/D4 T4SS was found to be dispensable for Ptw effector(s) secretion, but was found to be involved in plasmid mobilization. The fertility inhibitor Osa did not affect the secretion of Ptw effector(s) via the Ptw system, but did disrupt the mobilization of a RSF1010 derivative plasmid.


mBio ◽  
2016 ◽  
Vol 7 (2) ◽  
Author(s):  
Carrie L. Shaffer ◽  
James A. D. Good ◽  
Santosh Kumar ◽  
K. Syam Krishnan ◽  
Jennifer A. Gaddy ◽  
...  

ABSTRACT Bacteria utilize complex type IV secretion systems (T4SSs) to translocate diverse effector proteins or DNA into target cells. Despite the importance of T4SSs in bacterial pathogenesis, the mechanism by which these translocation machineries deliver cargo across the bacterial envelope remains poorly understood, and very few studies have investigated the use of synthetic molecules to disrupt T4SS-mediated transport. Here, we describe two synthetic small molecules (C10 and KSK85) that disrupt T4SS-dependent processes in multiple bacterial pathogens. Helicobacter pylori exploits a pilus appendage associated with the cag T4SS to inject an oncogenic effector protein (CagA) and peptidoglycan into gastric epithelial cells. In H. pylori , KSK85 impedes biogenesis of the pilus appendage associated with the cag T4SS, while C10 disrupts cag T4SS activity without perturbing pilus assembly. In addition to the effects in H. pylori , we demonstrate that these compounds disrupt interbacterial DNA transfer by conjugative T4SSs in Escherichia coli and impede vir T4SS-mediated DNA delivery by Agrobacterium tumefaciens in a plant model of infection. Of note, C10 effectively disarmed dissemination of a derepressed IncF plasmid into a recipient bacterial population, thus demonstrating the potential of these compounds in mitigating the spread of antibiotic resistance determinants driven by conjugation. To our knowledge, this study is the first report of synthetic small molecules that impair delivery of both effector protein and DNA cargos by diverse T4SSs. IMPORTANCE Many human and plant pathogens utilize complex nanomachines called type IV secretion systems (T4SSs) to transport proteins and DNA to target cells. In addition to delivery of harmful effector proteins into target cells, T4SSs can disseminate genetic determinants that confer antibiotic resistance among bacterial populations. In this study, we sought to identify compounds that disrupt T4SS-mediated processes. Using the human gastric pathogen H. pylori as a model system, we identified and characterized two small molecules that prevent transfer of an oncogenic effector protein to host cells. We discovered that these small molecules also prevented the spread of antibiotic resistance plasmids in E. coli populations and diminished the transfer of tumor-inducing DNA from the plant pathogen A. tumefaciens to target cells. Thus, these compounds are versatile molecular tools that can be used to study and disarm these important bacterial machines.


Sign in / Sign up

Export Citation Format

Share Document