scholarly journals Discovery of drugs that possess activity against feline leukemia virus

2012 ◽  
Vol 93 (4) ◽  
pp. 900-905 ◽  
Author(s):  
Willie M. Greggs ◽  
Christine L. Clouser ◽  
Steven E. Patterson ◽  
Louis M. Mansky

Feline leukemia virus (FeLV) is a gammaretrovirus that is a significant cause of neoplastic-related disorders affecting cats worldwide. Treatment options for FeLV are limited, associated with serious side effects, and can be cost-prohibitive. The development of drugs used to treat a related retrovirus, human immunodeficiency virus type 1 (HIV-1), has been rapid, leading to the approval of five drug classes. Although structural differences affect the susceptibility of gammaretroviruses to anti-HIV drugs, the similarities in mechanism of replication suggest that some anti-HIV-1 drugs may also inhibit FeLV. This study demonstrates the anti-FeLV activity of four drugs approved by the US FDA (Food and Drug Administration) at non-toxic concentrations. Of these, tenofovir and raltegravir are anti-HIV-1 drugs, while decitabine and gemcitabine are approved to treat myelodysplastic syndromes and pancreatic cancer, respectively, but also have anti-HIV-1 activity in cell culture. Our results indicate that these drugs may be useful for FeLV treatment and should be investigated for mechanism of action and suitability for veterinary use.

2019 ◽  
Vol 27 ◽  
pp. 204020661982938 ◽  
Author(s):  
Erik De Clercq

AMD3100 (plerixafor, Mozobil®) was first identified as an anti-HIV agent specifically active against the T4-lymphotropic HIV strains, as it selectively blocked the CXCR4 receptor. Through interference with the interaction of CXCR4 with its natural ligand, SDF-1 (also named CXCL12), it also mobilized the CD34+stem cells from the bone marrow into the peripheral blood stream. In December 2008, AMD3100 was formally approved by the US FDA for autologous transplantation in patients with Non-Hodgkin’s Lymphoma or multiple myeloma. It may be beneficially used in various other malignant diseases as well as hereditary immunological disorders such as WHIM syndrome, and physiopathological processes such as hepatopulmonary syndrome.


2008 ◽  
Vol 52 (6) ◽  
pp. 2111-2119 ◽  
Author(s):  
Hirotomo Nakata ◽  
Seth M. Steinberg ◽  
Yasuhiro Koh ◽  
Kenji Maeda ◽  
Yoshikazu Takaoka ◽  
...  

ABSTRACT Aplaviroc (AVC), an experimental CCR5 inhibitor, potently blocks in vitro the infection of R5-tropic human immunodeficiency virus type 1 (R5-HIV-1) at subnanomolar 50% inhibitory concentrations. Although maraviroc is presently clinically available, further studies are required to determine the role of CCR5 inhibitors in combinations with other drugs. Here we determined anti-HIV-1 activity using combinations of AVC with various anti-HIV-1 agents, including four U.S. Food and Drug Administration-approved drugs, two CCR5 inhibitors (TAK779 and SCH-C) and two CXCR4 inhibitors (AMD3100 and TE14011). Combination effects were defined as synergistic or antagonistic when the activity of drug A combined with B was statistically greater or less, respectively, than the additive effects of drugs A and A combined and drugs B and B combined by using the Combo method, described in this paper, which provides (i) a flexible choice of interaction models and (ii) the use of nonparametric statistical methods. Synergistic effects against R5-HIV-1Ba-L and a 50:50 mixture of R5-HIV-1Ba-L and X4-HIV-1ERS104pre (HIV-1Ba-L/104pre) were seen when AVC was combined with zidovudine, nevirapine, indinavir, or enfuvirtide. Mild synergism and additivity were observed when AVC was combined with TAK779 and SCH-C, respectively. We also observed more potent synergism against HIV-1Ba-L/104pre when AVC was combined with AMD3100 or TE14011. The data demonstrate a tendency toward greater synergism with AVC plus either of the two CXCR4 inhibitors compared to the synergism obtained with combinations of AVC and other drugs, suggesting that the development of effective CXCR4 inhibitors may be important for increasing the efficacies of CCR5 inhibitors.


2021 ◽  
Vol 19 ◽  
Author(s):  
Sofia Salari ◽  
Hedyieh Karbasforooshan ◽  
Hesamoddin Hosseinjani

Background: The initial reports of a contagious novel Severe Acute Respiratory Syndrome – Coronavirus-2 (SARS-CoV-2) were proclaimed by Wuhan, Hubei province, China. This pathogen quickly became a health concern due to the World Health Organization's (WHO) alarm of its pandemic essence. Hence, there is an urgent need for efficacious and curative therapy against COVID-19. Objective: Theoretically, repurposing anti-viral drugs, specifically HIV treatments, could help the urgent need for treating COVID-19 due to the structural similarities of their critical enzyme substrates. Integrase inhibitors are a category of anti-HIV drugs that inhibit integrase strand transfer. In this review, we investigate the binding affinity and stability of raltegravir, dolutegravir, bictegravir, and elvitegravir in interactions with crucial enzymes of coronavirus. Methods: A literature search was conducted using scientific databases such as Web of Science, Medline (PubMed), Scopus, Google Scholar, and Embase from commencement to September 2020. The most relevant articles regarding the potential effects of integrase inhibitors against COVID-19 were gathered. Ultimately, ten original articles related to the searched terms were selected for this narrative review. Results: Apparently, in addition to the recent drugs prescribed to cure SARS-CoV-2, integrase inhibitors are promising drugs for repurposing in COVID-19 treatment. Several studies on raltegravir, dolutegravir, bictegravir and elvitegravir were conducted using virtual screening to guess either they are effective or not. Encouraging results were mostly reported for raltegravir and dolutegravir. Nevertheless, bictegravir and elvitegravir need more investigations. Conclusion: Further experimental and clinical studies of antiviral drugs are necessary to introduce appropriate treatment options for COVID-19.


Acta Naturae ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 68-76
Author(s):  
G. V. Kornilaeva ◽  
A. E. Siniavin ◽  
A. Schultz ◽  
A. Germann ◽  
C. Moog ◽  
...  

The anti-HIV activity of a new humic substance-derived preparation has been studied in individual pools of immune cells (CD4+ T lymphocytes, macrophages, dendritic cells). Near-complete inhibition of the HIV infection (by more than 90%) was achieved by treating each of the abovementioned cell types with non-toxic concentrations of the preparation. The inhibitory effect demonstrates the possibility of preventing the depletion of a significant portion of functionally important immune cells. A comparative study of infection inhibition in individual cell pools has allowed us to reveal the differences in the preparations effectiveness in each of the cell populations. A R5-tropic HIV-1 infection in macrophages exhibited maximum sensitivity to the preparation: 90% and 50% inhibition of the infection were observed in the presence of concentrations as low as 1.4 and 0.35 g/ml, respectively. A 15- and 19-fold higher concentration was required to achieve the same extent of inhibition in dendritic cells infected with the same strain. The effectiveness of the drug in CD4 + T lymphocytes is quite comparable to its effectiveness in macrophages. The drug is universally effective for both the T- and M-tropic variants of HIV-1.


2020 ◽  
Vol 117 (17) ◽  
pp. 9537-9545 ◽  
Author(s):  
Yajing Fu ◽  
Sijia He ◽  
Abdul A. Waheed ◽  
Deemah Dabbagh ◽  
Zheng Zhou ◽  
...  

P-selectin glycoprotein ligand-1 (PSGL-1) is a dimeric, mucin-like, 120-kDa glycoprotein that binds to P-, E-, and L-selectins. PSGL-1 is expressed primarily on the surface of lymphoid and myeloid cells and is up-regulated during inflammation to mediate leukocyte tethering and rolling on the surface of endothelium for migration into inflamed tissues. Although it has been reported that PSGL-1 expression inhibits HIV-1 replication, the mechanism of PSGL-1–mediated anti-HIV activity remains to be elucidated. Here we report that PSGL-1 in virions blocks the infectivity of HIV-1 particles by preventing the binding of particles to target cells. This inhibitory activity is independent of the viral glycoprotein present on the virus particle; the binding of particles bearing the HIV-1 envelope glycoprotein or vesicular stomatitis virus G glycoprotein or even lacking a viral glycoprotein is impaired by PSGL-1. Mapping studies show that the extracellular N-terminal domain of PSGL-1 is necessary for its anti–HIV-1 activity, and that the PSGL-1 cytoplasmic tail contributes to inhibition. In addition, we demonstrate that the PSGL-1–related monomeric E-selectin–binding glycoprotein CD43 also effectively blocks HIV-1 infectivity. HIV-1 infection, or expression of either Vpu or Nef, down-regulates PSGL-1 from the cell surface; expression of Vpu appears to be primarily responsible for enabling the virus to partially escape PSGL-1–mediated restriction. Finally, we show that PSGL-1 inhibits the infectivity of other viruses, such as murine leukemia virus and influenza A virus. These findings demonstrate that PSGL-1 is a broad-spectrum antiviral host factor with a unique mechanism of action.


AIDS ◽  
2010 ◽  
Vol 24 (2) ◽  
pp. 319-323 ◽  
Author(s):  
Moira A McMahon ◽  
Janet D Siliciano ◽  
Rahul M Kohli ◽  
Robert F Siliciano

Author(s):  
Nguyen Truong Tien ◽  
Bui Tho Thanh

The HIV/AIDS epidemic has become one of the most dangerous causes leading to millions of deaths around the world a year. To date, there have not had effective anti-HIV drugs in the treatment of HIV/AIDS because of emerging drug-resistant HIV mutants. In this work, potential non-nucleoside reverse transcriptase inhibitors (NNRTIs) were studied by means of molecular docking. The Diversity “drug-like” database from the National Cancer Institute, is composed of 1.420 compounds, was performed docking into the NNRTI binding pocket of HIV-1 reverse transcriptase crystal structure (1fk9) by using Autodock version 4.2.6. Pharmacokinetic properties (absorption, distribution, metabolism and excretion (ADME)) and toxicity of potential inhibitors within the body were predicted by the PreADMET version 2.0. The obtained results point out that the compound, coded 2518, was discovered as a potential inhibitor that has good human intestinal absorption, weakly bound to plasma proteins as well as is negative to mutagenicity and carcinogenicity. This rational inhibitor would be further studied in order to contribute informations finding new anti-HIV drugs.


Author(s):  
I. A. Kashyn ◽  
G. I. Nikolaev ◽  
M. A. Tuzikov ◽  
A. M. Andrianov

Molecular dynamics simulations for the structural complexes of potential HIV-1 inhibitors with the viral envelope gp120 protein were carried out. Free energies of the formation of these supramolecular structures and contributions of individual amino-acid residues of gp120 to the enthalpy binding were calculated. The residues of gp120 critical for interactions with the ligands were identified. Based on the data obtained, five compounds promising for synthesis and testing for antiviral activity were selected. It is suggested that these compounds may be successfully used in the design of novel, potent and broad anti-HIV drugs.


Proceedings ◽  
2020 ◽  
Vol 50 (1) ◽  
pp. 77
Author(s):  
Yajing Fu ◽  
Sijia He ◽  
Abdul Waheed ◽  
Deemah Dabbagh ◽  
Zheng Zhou ◽  
...  

P-selectin glycoprotein ligand-1 (PSGL-1) is a dimeric, mucin-like, 120-kDa glycoprotein that binds to P-, E-, and L-selectins. PSGL-1 is primarily expressed on the surface of lymphoid and myeloid cells and is up-regulated during inflammation to mediate leukocyte tethering and rolling on the surface of endothelium for migration into inflamed tissues. Although it has been reported that PSGL-1 expression inhibits human immunodeficiency virus type 1 (HIV-1) replication, the mechanism of PSGL-1-mediated anti-HIV activity remains to be elucidated. Here, we report that PSGL-1 in virions blocks the infectivity of HIV-1 particles by preventing the binding of particles to target cells. This inhibitory activity is independent of the viral glycoprotein present on the virus particle; the binding of particles bearing the HIV-1 envelope glycoprotein, vesicular stomatitis virus G glycoprotein, or lacking a viral glycoprotein, is impaired by PSGL-1. Mapping studies show that the extracellular, N-terminal domain of PSGL-1 is necessary for its anti-HIV-1 activity, and the PSGL-1 cytoplasmic tail contributes to its inhibition. In addition, we demonstrate that the PSGL-1-related monomeric E-selectin-binding glycoprotein CD43 also effectively blocks HIV-1 infectivity. HIV-1 infection, or the expression of either Vpu or Nef, downregulates PSGL-1 from the cell surface; the expression of Vpu appears to be primarily responsible for enabling the virus to partially escape PSGL-1-mediated restriction. Finally, we show that PSGL-1 inhibits the infectivity of other viruses such as murine leukemia virus and influenza A virus. These findings demonstrate that PSGL-1 is a broad-spectrum antiviral host factor with a novel mechanism of action.


Sign in / Sign up

Export Citation Format

Share Document