scholarly journals Heterogeneous nuclear ribonuclear protein K interacts with the enterovirus 71 5′ untranslated region and participates in virus replication

2008 ◽  
Vol 89 (10) ◽  
pp. 2540-2549 ◽  
Author(s):  
Jing-Yi Lin ◽  
Mei-Ling Li ◽  
Peng-Nien Huang ◽  
Kun-Yi Chien ◽  
Jim-Tong Horng ◽  
...  

Enterovirus 71 (EV71) is a picornavirus that can cause severe neurological complications in children. Like other picornaviruses, the genomic RNA of EV71 contains a long 5′ untranslated region (UTR). Cellular proteins interact with the EV71 5′ UTR, and these interactions are important for virus replication. Using an RNA pull-down assay and proteomics approaches, this study identified the heterogeneous nuclear ribonucleoprotein K (hnRNP K) as one of the EV71 5′ UTR-associated proteins. The interaction between hnRNP K and the 5′ UTR was further confirmed by mapping the interaction regions to stem–loops I–II and IV in the 5′ UTR. During EV71 infection, hnRNP K was enriched in the cytoplasm where virus replication occurs, whereas hnRNP K was localized in the nucleus in mock-infected cells. Viral yields were found to be significantly lower in hnRNP K knockdown cells and viral RNA synthesis was delayed in hnRNP K knockdown cells in comparison with negative-control cells treated with small interfering RNA. These results suggest that hnRNP K interacts with the EV71 5′ UTR and participates in virus replication.

2021 ◽  
Author(s):  
Guangming Liu ◽  
Danping Zhu ◽  
Dandan Hu ◽  
Suyun Li ◽  
Qiuyan Peng ◽  
...  

Abstract Objective Enterovirus 71 (EV71), one of the enteroviruses responsible for the hand, foot and mouth disease (HFMD), can cause severe neurologic diseases such as brainstem encephalitis and demyelination. The molecular mechanism of demyelination is still not fully understood. This study aims to investigate the mechanism of how the EV71 structural viral protein 1, VP1 can act on host cellular pathways in mouse Schwann cells. Methods An EV71 VP1-expressing vector was generated and transfected into mouse Schwann cells (MSCs). Selective mRNA methylation inhibitor (DAA) was employed to identify key members of m6A pathway that are targeted by VP1. To investigate the role of METTL14 and YTHDF1 in PMP22 expression, small interfering RNA against METTL14 and YTHDF1 was employed to knockdown the METTL14 and YTHDF1 expression in MSCs. Real-time PCR and Western blot analysis were performed to determine the expression of PMP22 and m6A modification-associated proteins. Results Our results demonstrated VP1 upregulated m6A pathway by targeting METTL14 and YTHDF1. The expression of PMP22 was decreased by inhibiting the expression of METTL14 and YTHDF1. Conclusions VP1 upregulates m6A modification, which in turn causes the hypermethylation of PMP22 in MSCs, resulting in a higher level of PMP22. Ultimately, this VP1-induced PMP22 overexpression leads to MSC autophagy.


2007 ◽  
Vol 81 (14) ◽  
pp. 7491-7503 ◽  
Author(s):  
Christos A. Kyratsous ◽  
Saul J. Silverstein

ABSTRACT Varicella-zoster virus (VZV) establishes a lifelong latent infection in the dorsal root ganglia of the host. During latency, a subset of virus-encoded regulatory proteins is detected; however, they are excluded from the nucleus. ORF29p, a single-stranded DNA binding protein, is one of these latency-associated proteins. We searched for cell proteins that interact with ORF29p and identified BAG3. BAG3, Hsp70/Hsc70, and Hsp90 colocalize with ORF29p in nuclear transcription/replication factories during lytic replication of VZV. Pharmacological intercession of Hsp90 activity with ansamycin antibiotics or depletion of BAG3 by small interfering RNA results in inhibition of virus replication. Replication in BAG3-depleted cell lines is restored by complementation with exogenous BAG3. Alteration of host chaperone activity provides a novel means of regulating virus replication.


Author(s):  
Morganna C. Lima ◽  
Elisa A. N. Azevedo ◽  
Clarice N. L. de Morais ◽  
Larissa I. O. de Sousa ◽  
Bruno M. Carvalho ◽  
...  

Background: Zika virus is an emerging arbovirus of global importance. ZIKV infection is associated with a range of neurological complications such as the Congenital Zika Syndrome and Guillain Barré Syndrome. Despite the magnitude of recent outbreaks, there is no specific therapy to prevent or to alleviate disease pathology. Objective: To investigate the role of P-MAPA immunomodulator in Zika-infected THP-1 cells. Methods: THP-1 cells were subjected at Zika virus infection (Multiplicity of Infection = 0.5) followed by treatment with P-MAPA for until 96 hours post-infection. After that, the cell death was analyzed by annexin+/ PI+ and caspase 3/ 7+ staining by flow cytometry. In addition, the virus replication and cell proliferation were accessed by RT-qPCR and Ki67 staining, respectively. Results: We demonstrate that P-MAPA in vitro treatment significantly reduces Zika virus-induced cell death and caspase-3/7 activation on THP-1 infected cells, albeit it has no role in virus replication and cell proliferation. Conclusions: Our study reveals that P-MAPA seems to be a satisfactory alternative to inhibits the effects of Zika virus infection in mammalian cells.


1991 ◽  
Vol 11 (3) ◽  
pp. 1578-1589
Author(s):  
L D Fresco ◽  
D S Harper ◽  
J D Keene

Recombinant A' protein could be reconstituted into U2 small nuclear ribonucleoprotein particles (snRNPs) upon addition to HeLa cell extracts as determined by coimmunoprecipitation and particle density; however, direct binding to U2 RNA could not be demonstrated except in the presence of the U2 snRNP B" protein. Mutational analysis indicated that a central core region of A' was required for particle reconstitution. This region consists of five tandem repeats of approximately 24 amino acids each that exhibit a periodicity of leucine and asparagine residues that is distinct from the leucine zipper. Similar leucine-rich (Leu-Leu motif) repeats are characteristic of a diverse array of soluble and membrane-associated proteins from yeasts to humans but have not been reported previously to reside in nuclear proteins. Several of these proteins, including Toll, chaoptin, RNase/angiogenin inhibitors, lutropin-choriogonadotropin receptor, carboxypeptidase N, adenylyl cyclase, CD14, and human immunodeficiency virus type 1 Rev, may be involved in protein-protein interactions. Our findings suggest that in cell extracts the Leu-Leu motif of A' is required for reconstitution with U2 snRNPs and perhaps with other components involved in splicing through protein-protein interactions.


Endocrinology ◽  
2008 ◽  
Vol 149 (6) ◽  
pp. 2888-2898 ◽  
Author(s):  
Dan L. Sackett ◽  
Laurent Ozbun ◽  
Enrique Zudaire ◽  
Lisa Wessner ◽  
John M. Chirgwin ◽  
...  

Adrenomedullin (AM) and proadrenomedullin N-terminal 20 peptide (PAMP) are secretory hormones, but it is not unusual to find them in intracellular compartments. Using yeast-2 hybrid technology, we found interactions between AM and several microtubule-associated proteins (MAPs), and between PAMP and tubulin. Expression of fluorescent-tagged AM and PAMP as well as immunofluorescence for the native peptides showed a complete decoration of the microtubules and colocalization with other MAPs. PAMP, but not AM, bound to tubulin in vitro and destabilized tubulin polymerization. Down-regulation of the gene coding for both AM and PAMP through small interfering RNA technology resulted in morphological changes, microtubule stabilization, increase in posttranslational modifications of tubulin such as acetylation and detyrosination, reduction in cell motility, and partial arrest at the G2 phase of the cell cycle, when compared with cells transfected with the same vector carrying a scrambled sequence. These results show that PAMP is a novel MAP, whereas AM may be exerting more subtle effects in regulating cytoskeleton function.


2020 ◽  
pp. 57-57
Author(s):  
Bogdan Jovanovic ◽  
Lisa Schubert ◽  
Fabian Poetz ◽  
Georg Stoecklin

Ribosomes, the catalytic machinery required for protein synthesis, are comprised of 4 ribosomal RNAs and about 80 ribosomal proteins in mammals. Ribosomes further interact with numerous associated factors that regulate their biogenesis and function. As mutations of ribosomal proteins and ribosome associated proteins cause many diseases, it is important to develop tools by which ribosomes can be purified efficiently and with high specificity. Here, we designed a method to purify ribosomes from human cell lines by C-terminally tagging human RPS9, a protein of the small ribosomal subunit. The tag consists of a flag peptide and a streptavidin-binding peptide (SBP) separated by the tobacco etch virus (TEV) protease cleavage site. We demonstrate that RPS9-Flag-TEV-SBP (FTS) is efficiently incorporated into the ribosome without interfering with regular protein synthesis. Using HeLa-GFP-G3BP1 cells stably expressing RPS9-FTS or, as a negative control, mCherry-FTS, we show that complete ribosomes as well as numerous ribosome-associated proteins are efficiently and specifically purified following pull-down of RPS9-FTS using streptavidin beads. This tool will be helpful for the characterization of human ribosome heterogeneity, post-translational modifications of ribosomal proteins, and changes in ribosome-associated factors after exposing human cells to different stimuli and conditions.


BMC Urology ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Cai Lv ◽  
Yuan Huang ◽  
Qingqing Lei ◽  
Zhenxiang Liu ◽  
Shixing Shen ◽  
...  

Abstract Background The metastasis-associated gene 1 (MTA1) has been extensively reported as a crucial oncogene, and its abnormal expression has been associated with the progression of numerous cancers. However, the role of MTA1 in renal cell carcinoma (RCC) progression and metastasis remains unclear. Herein, we investigated the expression of MTA1 and its role in RCC. Methods 109 matched clear cell RCCs (ccRCCs) and corresponding normal tissue samples were analyzed via immunohistochemistry to test the expression of MTA1. Human A498 cell lines were transfected with pcDNA3.1-Flag (control) or Flag-MTA1 to overexpress MTA1 or with specific interfering RNA (si-MTA1) or specific interfering negative control to knockdown MTA1 expression. Transfected cells were used in wound healing and transwell invasion assay. Quantitative real time polymerase chain reaction was used to assess the effect of MTA1 on MMP2/MMP9 and E-cadherin gene expression. Western blot was used to qualify the phosphorylation of p65. Results Herein, we found a significantly increased expression of MTA1 in 109 ccRCCs, compared to the corresponding normal tissue. In addition, the overexpression of MTA1 in A498 cells facilitated cell migration and invasion, while the down-regulation of MTA1 expression using specific interfering RNA sequences could decrease cell migration and invasion. Furthermore, we showed that MTA1 is up-regulated in ccRCCs, which contributes to the migration and invasion of human kidney cancer cells by mediating the expression of MMP2 and MMP9 through the NF-κB signaling pathway. Similarly, we found that MTA1 could regulate E-cadherin expression in RCCs. Conclusions MTA1 is overexpressed in RCC and is involved in the progression of RCC through NF-κB.


PLoS ONE ◽  
2009 ◽  
Vol 4 (5) ◽  
pp. e5671 ◽  
Author(s):  
Hong-Yan Sui ◽  
Guang-Yu Zhao ◽  
Jian-Dong Huang ◽  
Dong-Yan Jin ◽  
Kwok-Yung Yuen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document