scholarly journals Chromatin Modification and Remodeling in Heart Development

2006 ◽  
Vol 6 ◽  
pp. 1851-1861 ◽  
Author(s):  
Paul Delgado-Olguín ◽  
Jun K. Takeuchi ◽  
Benoit G. Bruneau

In organogenesis, cell types are specified from determined precursors as morphogenetic patterning takes place. These events are largely controlled by tissue-specific transcription factors. These transcription factors must function within the context of chromatin to activate or repress target genes. Recent evidence suggests that chromatin-remodeling and -modifying factors may have tissue-specific function. Here we review the potential roles for chromatin-remodeling and -modifying proteins in the development of the mammalian heart.

Development ◽  
1995 ◽  
Vol 121 (9) ◽  
pp. 2799-2812 ◽  
Author(s):  
A. McCormick ◽  
N. Core ◽  
S. Kerridge ◽  
M.P. Scott

Along the anterior-posterior axis of animal embryos, the choice of cell fates, and the organization of morphogenesis, is regulated by transcription factors encoded by clustered homeotic or ‘Hox’ genes. Hox genes function in both epidermis and internal tissues by regulating the transcription of target genes in a position- and tissue-specific manner. Hox proteins can have distinct targets in different tissues; the mechanisms underlying tissue and homeotic protein specificity are unknown. Light may be shed by studying the organization of target gene enhancers. In flies, one of the target genes is teashirt (tsh), which encodes a zinc finger protein. tsh itself is a homeotic gene that controls trunk versus head development. We identified a tsh gene enhancer that is differentially activated by Hox proteins in epidermis and mesoderm. Sites where Antennapedia (Antp) and Ultrabithorax (Ubx) proteins bind in vitro were mapped within evolutionarily conserved sequences. Although Antp and Ubx bind to identical sites in vitro, Antp activates the tsh enhancer only in epidermis while Ubx activates the tsh enhancer in both epidermis and in somatic mesoderm. We show that the DNA elements driving tissue-specific transcriptional activation by Antp and Ubx are separable. Next to the homeotic protein-binding sites are extensive conserved sequences likely to control tissue activation by different homeodomain proteins. We propose that local interactions between homeotic proteins and other factors effect activation of targets in proper cell types.


2009 ◽  
Vol 20 (19) ◽  
pp. 4235-4245 ◽  
Author(s):  
Hidesato Ogawa ◽  
Tomoko Komatsu ◽  
Yasushi Hiraoka ◽  
Ken-ichirou Morohashi

The small ubiquitin-like modifier SUMO conjugates transcription factors and suppresses their respective activation of target genes. Although various SUMO-modified transcription factors have been isolated, mechanisms whereby sumoylated-substrates modulate transcription remain unknown. Here, we purified ARIP4 (AR interacting protein 4, a Rad54 family member and a SNF2 chromatin remodeling factor), which interacts with sumoylated Ad4BP/SF-1 through two SUMO-interacting motifs and one Ad4BP/SF-1–binding region. Remarkably, ARIP4 also interacts selectively with other sumoylated nuclear receptors including LRH-1, AR, and GR. Interestingly, the ATPase activity of ARIP4 was stimulated in the presence of sumoylated Ad4BP/SF-1 and the Ad4BP/SF-1–binding site containing double-stranded DNA. ChIP assays and siRNA studies strongly suggested that ARIP4 temporally suppresses Ad4BP/SF-1–mediated transcription through its transient recruitment to target genes. These findings suggest that ARIP4 may be a cofactor that modulates SUMO-mediated fine-tuning of transcriptional suppression.


2000 ◽  
Vol 20 (22) ◽  
pp. 8613-8622 ◽  
Author(s):  
Gian Maria Fimia ◽  
Dario De Cesare ◽  
Paolo Sassone-Corsi

ABSTRACT Transcription factors of the CREB family control the expression of a large number of genes in response to various signaling pathways. Regulation mediated by members of the CREB family has been linked to various physiological functions. Classically, activation by CREB is known to occur upon phosphorylation at an essential regulatory site (Ser133 in CREB) and the subsequent interaction with the ubiquitous coactivator CREB-binding protein (CBP). However, the mechanism by which selectivity is achieved in the identification of target genes, as well as the routes adopted to ensure tissue-specific activation, remains unrecognized. We have recently described the first tissue-specific coactivator of CREB family transcription factors, ACT (activator of CREM in testis). ACT is a LIM-only protein which associates with CREM in male germ cells and provides an activation function which is independent of phosphorylation and CBP. Here we characterize a family of LIM-only proteins which share common structural organization with ACT. These are referred to as four-and-a-half-LIM-domain (FHL) proteins and display tissue-specific and developmentally regulated expression. FHL proteins display different degrees of intrinsic activation potential. They provide powerful activation function to both CREB and CREM when coexpressed either in yeast or in mammalian cells, specific combinations eliciting selective activation. Deletion analysis of the ACT protein shows that the activation function depends on specific arrangements of the LIM domains, which are essential for both transactivation and interaction properties. This study uncovers the existence of a family of tissue-specific coactivators that operate through novel, CBP-independent routes to elicit transcriptional activation by CREB and CREM. The future identification of additional partners of FHL proteins is likely to reveal unappreciated aspects of tissue-specific transcriptional regulation.


1999 ◽  
Vol 145 (5) ◽  
pp. 1049-1061 ◽  
Author(s):  
Robert Eferl ◽  
Maria Sibilia ◽  
Frank Hilberg ◽  
Andrea Fuchsbichler ◽  
Iris Kufferath ◽  
...  

Mice lacking the AP-1 transcription factor c-Jun die around embryonic day E13.0 but little is known about the cell types affected as well as the cause of embryonic lethality. Here we show that a fraction of mutant E13.0 fetal livers exhibits extensive apoptosis of both hematopoietic cells and hepatoblasts, whereas the expression of 15 mRNAs, including those of albumin, keratin 18, hepatocyte nuclear factor 1, β-globin, and erythropoietin, some of which are putative AP-1 target genes, is not affected. Apoptosis of hematopoietic cells in mutant livers is most likely not due to a cell-autonomous defect, since c-jun−/− fetal liver cells are able to reconstitute all hematopoietic compartments of lethally irradiated recipient mice. A developmental analysis of chimeras showed contribution of c-jun−/− ES cell derivatives to fetal, but not to adult livers, suggesting a role of c-Jun in hepatocyte turnover. This is in agreement with the reduced mitotic and increased apoptotic rates found in primary liver cell cultures derived from c-jun−/− fetuses. Furthermore, a novel function for c-Jun was found in heart development. The heart outflow tract of c-jun−/− fetuses show malformations that resemble the human disease of a truncus arteriosus persistens. Therefore, the lethality of c-jun mutant fetuses is most likely due to pleiotropic defects reflecting the diversity of functions of c-Jun in development, such as a role in neural crest cell function, in the maintenance of hepatic hematopoiesis and in the regulation of apoptosis.


2019 ◽  
Author(s):  
Li Wang ◽  
Iouri Chepelev ◽  
Yoon Ra Her ◽  
Marcia Manterola ◽  
Binyamin Berkovits ◽  
...  

AbstractBRDT, a member of the BET family of double bromodomain-containing proteins, is expressed uniquely in the male germ line, is essential for spermatogenesis in the mouse, and binds to acetylated transcription start sites of genes expressed in meiosis and spermiogenesis. It has thus been postulated to be a key regulator of transcription in meiotic and post-meiotic cells. To understand the function of BRDT in regulating gene expression, we characterized its genome-wide distribution, in particular the features of the BRDT binding sites within gene units, by ChIP-Seq analysis of enriched fractions of spermatocytes and spermatids. In both cell types, BRDT binding sites were mainly located in promoters, first exon, and introns of genes that are highly transcribed during meiosis and spermiogenesis. Furthermore, in promoters, BRDT binding sites overlapped with several histone modifications and histone variants associated with active transcription, and were also enriched for consensus sequences for specific transcription factors, including MYB, RFX, ETS and ELF1 in pachytene spermatocytes, and JunD, c-Jun, CRE and RFX in round spermatids. Our analysis further revealed that BRDT-bound genes play key roles in diverse biological processes that are essential for proper spermatogenesis. Taken together, our data suggest that BRDT is involved in the recruitment of different transcription factors to distinctive chromatin regions within gene units to regulate diverse downstream target genes that function in male meiosis and spermiogenesis.


1999 ◽  
Vol 337 (2) ◽  
pp. 253-262 ◽  
Author(s):  
Lucia PELLIZZARI ◽  
Gianluca TELL ◽  
Giuseppe DAMANTE

Pax proteins are transcription factors that play an important role in the differentiation of several cell types. These proteins bind to specific DNA sequences through the paired domain. This evolutionarily conserved element is composed of two subdomains (PAI and RED), located at the N- and C-terminals, respectively. Due to the presence of these two subdomains, Pax proteins may recognize DNA in different modes, a possibility that has not been exhaustively explored yet. The C site of the thyroglobulin promoter is bound by the thyroid-specific transcription factor Pax-8. In this study we have characterized the mode by which the Pax-8 paired domain interacts with the C site. Results allow the identification of the respective positions of the PAI and RED subdomains when the full-length protein is bound to the C site. The binding of the isolated PAI and RED subdomains to the C site and to several related mutants was also evaluated. Both subdomains interact with DNA as a monomer and display a lower binding affinity than the full-length protein. Therefore, the Pax-8 paired domain–C site interaction occurs through a co-operation between the two subdomains. The binding properties of the PAI subdomain suggest that the co-operation between PAI and RED subdomains does not merely consist of the sum of contacts established by the single subdomain: the presence of the RED subdomain is necessary for correct DNA recognition by the PAI subdomain, thus accounting for a sort of chronology of events during DNA binding. Since the RED subdomain is much more variable than the PAI subdomain among Pax proteins, these results could explain how distinct Pax proteins may select different target genes.


2019 ◽  
Vol 116 (28) ◽  
pp. 14049-14054 ◽  
Author(s):  
Andrew Robson ◽  
Svetlana Z. Makova ◽  
Syndi Barish ◽  
Samir Zaidi ◽  
Sameet Mehta ◽  
...  

Genomic analyses of patients with congenital heart disease (CHD) have identified significant contribution from mutations affecting cilia genes and chromatin remodeling genes; however, the mechanism(s) connecting chromatin remodeling to CHD is unknown. Histone H2B monoubiquitination (H2Bub1) is catalyzed by the RNF20 complex consisting of RNF20, RNF40, and UBE2B. Here, we show significant enrichment of loss-of-function mutations affecting H2Bub1 in CHD patients (enrichment 6.01,P= 1.67 × 10−03), some of whom had abnormal laterality associated with ciliary dysfunction. InXenopus, knockdown ofrnf20andrnf40results in abnormal heart looping, defective development of left–right (LR) asymmetry, and impaired cilia motility. Rnf20, Rnf40, and Ube2b affect LR patterning and cilia synergistically. Examination of global H2Bub1 level inXenopusembryos shows that H2Bub1 is developmentally regulated and requires Rnf20. To examine gene-specific H2Bub1, we performed ChIP-seq of mouse ciliated and nonciliated tissues and showed tissue-specific H2Bub1 marks significantly enriched at cilia genes including the transcription factorRfx3. Rnf20 knockdown results in decreased levels ofrfx3mRNA inXenopus, and exogenousrfx3can rescue the Rnf20 depletion phenotype. These data suggest that Rnf20 functions at theRfx3locus regulating cilia motility and cardiac situs and identify H2Bub1 as an upstream transcriptional regulator controlling tissue-specific expression of cilia genes. Our findings mechanistically link the two functional gene ontologies that have been implicated in human CHD: chromatin remodeling and cilia function.


2019 ◽  
Vol 5 (3) ◽  
pp. eaav3262 ◽  
Author(s):  
Kai Zhang ◽  
Mengchi Wang ◽  
Ying Zhao ◽  
Wei Wang

Transcriptional regulation is pivotal to the specification of distinct cell types during embryonic development. However, it still lacks a systematic way to identify key transcription factors (TFs) orchestrating the temporal and tissue specificity of gene expression. Here, we integrated epigenomic and transcriptomic data to reveal key regulators from two cells to postnatal day 0 in mouse embryogenesis. We predicted three-dimensional chromatin interactions in 12 tissues across eight developmental stages, which facilitates linking TFs to their target genes for constructing transcriptional regulatory networks. To identify driver TFs, we developed a new algorithm, dubbed Taiji, to assess the global influence of each TF and systematically uncovered TFs critical for lineage-specific and stage-dependent tissue specification. We have also identified TF combinations that function in spatiotemporal order to form transcriptional waves regulating developmental progress. Furthermore, lacking stage-specific TF combinations suggests a distributed timing strategy to orchestrate the coordination between tissues during embryonic development.


2003 ◽  
Vol 75 (11-12) ◽  
pp. 1757-1769 ◽  
Author(s):  
P. J. Kushner ◽  
P. Webb ◽  
R. M. Uht ◽  
M.-M. Liu ◽  
R. H. Price

The estrogen receptors alpha and beta (ERα and ERβ) mediate the changes in gene expression from physiological and environmental estrogens. Early studies identified classical estrogen response elements (EREs) in the promoter region of target genes whose expression is regulated by estrogen and to which the ERs bind via their DNA-binding domain (DBD). EREs in the pituitary prolactin promoter, for example, mediate an activation by both ERα and ERβ albeit with different affinities for different ligands. Full activation in most cell types requires the integrity of the activation function 2 (AF-2) in the receptors ligand binding domain (LBD), which is engaged by estrogens and disengaged by tamoxifen, raloxifene, and other antiestrogens. However, in some cells and ERE contexts, the AF-1 in the ERα amino terminal domain (NTD) is sufficient. We now know that ERs also regulate expression of target genes that do not have EREs, but instead have various kinds of alternative response elements that bind heterologous transcription factors whose activity is regulated by interactions with ERs. Thus, ERα activates genes, including collagenase and cyclin D1, an important mediator of cellular proliferation, by AP-1 and CRE sites, which bind Jun/Fos or Jun/ATF-2 transcription factors. ERα also activates gene expression through GC-rich elements that bind the SP1 transcription factor. Finally, we also know that ERs mediate inhibition of the expression of many genes. In one well-studied instance, ERs counterexpression of genes involved in the inflammatory response by inhibiting the action at tumor necrosis factor response elements (TNF-REs) that bind the NFkappaB transcription factor. ERβ is especially efficient at this inhibition. ERα activation of AP-1/CRE target genes is of special interest because of the putative role of these target genes in mediating proliferation. The AF-1 and AF-2 functions of ERα are both needed for this activation in most cell types. However, in uterine cells, the AF-1 function is sufficient. Thus, the antiestrogen tamoxifen, which allows AF-1, mimics estrogen and drives activation of AP-1/CRE target genes and proliferation of uterine cells. This estrogen-like action, which can increase the risk of uterine cancer, complicates the use of tamoxifen to prevent breast cancer. Surprisingly, ERβ inhibits AP-1/CRE target genes in the presence of estrogen. When both receptors are present, ERβ efficiently opposes activation by ERα. Moreover, ERβ activates the AP-1/CRE target genes in the presence of antiestrogens especially so-called "complete" antiestrogens raloxifene, and ICI 182, 780. We here review the evidence for different kinds of promoter elements that mediate ER action, for the differential ligand preferences of ERα and ERβ at these different elements, and the potential mechanisms by which they are mediated. One attractive strategy for the investigation and comparison of potential environmental estrogens is to assay their activity in cell culture systems using reporter genes with simplified promoter elements. Thus, the findings of complexity in ERα and ERβ activation at different types of response elements needs to be taken into account in the development and interpretation of assays using simplified promoter elements systems.


2016 ◽  
Vol 7 (4) ◽  
pp. 215-227 ◽  
Author(s):  
Svitlana V. Bach ◽  
Ashok N. Hegde

AbstractThe proteasome is a structural complex of many proteins that degrades substrates marked by covalent linkage to ubiquitin. Many years of research has shown a role for ubiquitin-proteasome-mediated proteolysis in synaptic plasticity and memory mainly in degrading synaptic, cytoplasmic and nuclear proteins. Recent work indicates that the proteasome has wider proteolytic and non-proteolytic roles in processes such as histone modifications that affect synaptic plasticity and memory. In this review, we assess the evidence gathered from neuronal as well as non-neuronal cell types regarding the function of the proteasome in positive or negative regulation of posttranslational modifications of histones, such as acetylation, methylation and ubiquitination. We discuss the critical roles of the proteasome in clearing excess histone proteins in various cellular contexts and the possible non-proteolytic functions in regulating transcription of target genes. In addition, we summarize the current literature on diverse chromatin-remodeling machineries, such as histone acetyltransferases, deacetylates, methyltransferases and demethylases, as targets for proteasomal degradation across experimental models. Lastly, we provide a perspective on how proteasomal regulation of histone modifications may modulate synaptic plasticity in the nervous system.


Sign in / Sign up

Export Citation Format

Share Document