scholarly journals A conserved abundant cytoplasmic long noncoding RNA modulates repression by Pumilio proteins in human cells

2015 ◽  
Author(s):  
Ailone Tichon ◽  
Noa Gil ◽  
Yoav Lubelsky ◽  
Tal Havkin Solomon ◽  
Doron Lemze ◽  
...  

AbstractThousands of long noncoding RNA (lncRNA) genes are encoded in the human genome, and hundreds of them are evolutionary conserved, but their functions and modes of action remain largely obscure. Particularly enigmatic lncRNAs are those that are exported to the cytoplasm, including NORAD – an abundant and highly conserved cytoplasmic lncRNA. Most of the sequence of NORAD is comprised of repetitive units that together contain at least 17 functional binding sites for the two Pumilio homologs in mammals. Through binding to PUM1 and PUM2, NORAD modulates the mRNA levels of their targets, which are enriched for genes involved in chromosome segregation during cell division. Our results suggest that some cytoplasmic lncRNAs function by modulating the activities of RNA binding proteins, an activity which positions them at key junctions of cellular signaling pathways.

2021 ◽  
Vol 15 ◽  
Author(s):  
Lichao Zhang ◽  
Zihong Huang ◽  
Liang Kong

Background: RNA-binding proteins establish posttranscriptional gene regulation by coordinating the maturation, editing, transport, stability, and translation of cellular RNAs. The immunoprecipitation experiments could identify interaction between RNA and proteins, but they are limited due to the experimental environment and material. Therefore, it is essential to construct computational models to identify the function sites. Objective: Although some computational methods have been proposed to predict RNA binding sites, the accuracy could be further improved. Moreover, it is necessary to construct a dataset with more samples to design a reliable model. Here we present a computational model based on multi-information sources to identify RNA binding sites. Method: We construct an accurate computational model named CSBPI_Site, based on xtreme gradient boosting. The specifically designed 15-dimensional feature vector captures four types of information (chemical shift, chemical bond, chemical properties and position information). Results: The satisfied accuracy of 0.86 and AUC of 0.89 were obtained by leave-one-out cross validation. Meanwhile, the accuracies were slightly different (range from 0.83 to 0.85) among three classifiers algorithm, which showed the novel features are stable and fit to multiple classifiers. These results showed that the proposed method is effective and robust for noncoding RNA binding sites identification. Conclusion: Our method based on multi-information sources is effective to represent the binding sites information among ncRNAs. The satisfied prediction results of Diels-Alder riboz-yme based on CSBPI_Site indicates that our model is valuable to identify the function site.


2020 ◽  
Vol 11 (7) ◽  
Author(s):  
Jessica Rea ◽  
Valentina Menci ◽  
Paolo Tollis ◽  
Tiziana Santini ◽  
Alexandros Armaos ◽  
...  

Abstract Neuronal differentiation is a timely and spatially regulated process, relying on precisely orchestrated gene expression control. The sequential activation/repression of genes driving cell fate specification is achieved by complex regulatory networks, where transcription factors and noncoding RNAs work in a coordinated manner. Herein, we identify the long noncoding RNA HOTAIRM1 (HOXA Transcript Antisense RNA, Myeloid-Specific 1) as a new player in neuronal differentiation. We demonstrate that the neuronal-enriched HOTAIRM1 isoform epigenetically controls the expression of the proneural transcription factor NEUROGENIN 2 that is key to neuronal fate commitment and critical for brain development. We also show that HOTAIRM1 activity impacts on NEUROGENIN 2 downstream regulatory cascade, thus contributing to the achievement of proper neuronal differentiation timing. Finally, we identify the RNA-binding proteins HNRNPK and FUS as regulators of HOTAIRM1 biogenesis and metabolism. Our findings uncover a new regulatory layer underlying NEUROGENIN 2 transitory expression in neuronal differentiation and reveal a previously unidentified function for the neuronal-induced long noncoding RNA HOTAIRM1.


2018 ◽  
Author(s):  
Ana Boskovic ◽  
Xin Yang Bing ◽  
Ebru Kaymak ◽  
Oliver J Rando

Small RNAs derived from mature tRNAs, referred to as tRNA fragments or "tRFs", are an emerging class of regulatory RNAs with poorly understood functions in cellular regulation. We recently identified a role for one specific tRF - 5′ tRF-Gly-GCC, or tRF-GG - in repression of genes associated with the endogenous retroelement MERVL, but the mechanistic basis for this regulation was unknown. Here, we show that tRF-GG plays a role in production of a wide variety of noncoding RNAs normally synthesized in Cajal bodies. Among these noncoding RNAs, tRF-GG regulation of the U7 snRNA modulates heterochromatin-mediated transcriptional repression of MERVL elements by supporting an adequate supply of histone proteins. Importantly, the effects of inhibiting tRF-GG on histone mRNA levels, activity of a histone 3′ UTR reporter, and ultimately on MERVL regulation could all be suppressed by the U7 RNA. We show that the related RNA-binding proteins hnRNPF and H bind directly to tRF-GG, and are required for Cajal body biogenesis. Together, our data reveal a conserved mechanism for 5′ tRNA fragment control of noncoding RNA biogenesis and, consequently, in global chromatin organization.


2021 ◽  
Author(s):  
Omer Ziv ◽  
Svetlana Farberov ◽  
Jian You Lau ◽  
Eric A Miska ◽  
Grzegorz Kudla ◽  
...  

It is increasingly appreciated that long non-coding RNAs (lncRNAs) carry out important functions in mammalian cells, but how these are encoded in their sequences and manifested in their structures remains largely unknown. Some lncRNAs bind to and modulate the availability of RNA binding proteins, but the structural principles that underlie this mode of regulation are underexplored. Here, we focused on the NORAD lncRNA, which binds Pumilio proteins and modulates their ability to repress hundreds of mRNA targets. We probed the RNA structure and long-range RNA-RNA interactions formed by NORAD inside cells, under different stressful conditions. We discovered that NORAD structure is highly modular, and consists of well-defined domains that contribute independently to NORAD function. We discovered that NORAD structure spatially clusters the Pumilio binding sites along NORAD in a manner that contributes to the de-repression of Pumilio target proteins. Following arsenite stress, the majority of NORAD structure undergoes relaxation and forms inter-molecular interactions with RNAs that are targeted to stress granules. NORAD sequence thus dictates elaborated structural domain organization that facilitates its function on multiple levels, and which helps explain the extensive evolutionary sequence conservation of NORAD regions that are not predicted to directly bind Pumilio proteins.


2016 ◽  
Vol 113 (12) ◽  
pp. 3221-3226 ◽  
Author(s):  
Nara Lee ◽  
Therese A. Yario ◽  
Jessica S. Gao ◽  
Joan A. Steitz

Epstein–Barr virus (EBV) produces a highly abundant noncoding RNA called EBV-encoded RNA 2 (EBER2) that interacts indirectly with the host transcription factor paired box protein 5 (PAX5) to regulate viral latent membrane protein 1/2 (LMP1/2) gene expression as well as EBV lytic replication. To identify intermediary proteins, we isolated EBER2–PAX5-containing complexes and analyzed the protein components by mass spectrometry. The top candidates include three host proteins splicing factor proline and glutamine rich (SFPQ), non-POU domain-containing octamer-binding protein (NONO), and RNA binding motif protein 14 (RBM14), all reported to be components of nuclear bodies called paraspeckles. In vivo RNA–protein crosslinking indicates that SFPQ and RBM14 contact EBER2 directly. Binding studies using recombinant proteins demonstrate that SFPQ and NONO associate with PAX5, potentially bridging its interaction with EBER2. Similar to EBER2 or PAX5 depletion, knockdown of any of the three host RNA-binding proteins results in the up-regulation of viral LMP2A mRNA levels, supporting a physiologically relevant interaction of these newly identified factors with EBER2 and PAX5. Identification of these EBER2-interacting proteins enables the search for cellular noncoding RNAs that regulate host gene expression in a manner similar to EBER2.


2020 ◽  
Author(s):  
Deepak Sharma ◽  
Leah L. Zagore ◽  
Matthew M. Brister ◽  
Xuan Ye ◽  
Carlos E. Crespo-Hernández ◽  
...  

ABSTRACTGene expression in higher eukaryotic cells orchestrates interactions between thousands of RNA binding proteins (RBPs) and tens of thousands of RNAs 1. The kinetics by which RBPs bind to and dissociate from their RNA sites are critical for the coordination of cellular RNA-protein interactions 2. However, these kinetics were experimentally inaccessible in cells. Here we show that time-resolved RNA-protein crosslinking with a pulsed femtosecond UV laser, followed by immunoprecipitation and high throughput sequencing allows the determination of binding and dissociation kinetics of the RBP Dazl for thousands of individual RNA binding sites in cells. This kinetic crosslinking and immunoprecipitation (KIN-CLIP) approach reveals that Dazl resides at individual binding sites only seconds or shorter, while the sites remain Dazl-free markedly longer. The data further indicate that Dazl binds to many RNAs in clusters of multiple proximal sites. The impact of Dazl on mRNA levels and ribosome association correlates with the cumulative probability of Dazl binding in these clusters. Integrating kinetic data with mRNA features quantitatively connects Dazl-RNA binding to Dazl function. Our results show how previously inaccessible, kinetic parameters for RNA-protein interactions in cells can be measured and how these data quantitatively link RBP-RNA binding to cellular RBP function.


2020 ◽  
Author(s):  
Lijuan Hou ◽  
Jin Xie ◽  
Yaoyao Wu ◽  
Jiaojiao Wang ◽  
Anqi Duan ◽  
...  

Abstract Background Only 1.5% of the human genome encodes proteins, while most of the remaining encodes noncoding RNAs (ncRNA). Many ncRNAs form structures and perform many important functions. Accurately identifying structured ncRNAs in the human genome and discovering their biological functions remain a major challenge. Results Here, we have established a pipeline (CM-line) with the following features for analyzing the large genomes of humans and other animals. First, we selected species with larger genetic distances to facilitate the discovery of covariations and compatible mutations. Second, we used CMfinder, which can generate useful alignments even with low sequence conservation. Third, we removed repetitive sequences and known structured ncRNAs to reduce the workload of CMfinder. Fourth, we used Infernal to find more representatives and refine the structure. We reported 11 classes of structured ncRNA candidates with significant covariations in humans. Functional analysis showed that these ncRNAs have variable functions. Some may regulate circadian clock genes through poly (A) signals (PAS); some may regulate the elongation factor (EEF1A) and the T-cell receptor signaling pathway by cooperating with RNA binding proteins. Conclusions By searching for important features of RNA structure from large genomes, the CM-line has revealed the existence of a variety of novel structured ncRNAs. Functional analysis provides evidence for the potential biological functions of some newly found ncRNA motifs. The pipeline we have established for the discovery of structured ncRNAs and the identification of their functions can also be applied to analyze other large genomes.


2020 ◽  
Author(s):  
Hua Zhao ◽  
Wenjing Wu ◽  
Xu Li ◽  
Wei Chen

Abstract Background: Glutamine-driven anaplerosis maintains the tricarboxylic acid (TCA) cycle by replenishing its carbon source of intermediates with the glutamine-derived carbons in cancer cells. Long noncoding RNA urothelial cancer associated 1 (UCA1), initially identified in bladder cancer, is associated with multiple cellular processes, including metabolic reprogramming. However, its characteristics in the anaplerosis context of bladder cancer (BLCA) remains elusive. Methods: The mechanism of UCA1 bound to and facilitated the combination of hnRNP I/L to the promoter of GPT2 gene was investigated by RNA pulldown, qRT-PCR, western blot, dual luciferase reporter assays, immunohistochemical staining, chromatin immunoprecipitation and chromatin isolation by RNA purification. Metabolomics analysis and metabolic flux analysis were conducted to assess the effects of UCA1, hnRNP I/L, and GPT2 on metabolic reprogramming of BLCA.Results: We identified UCA1 as a binding partner of heterogeneous nuclear ribonucleoproteins (hnRNPs) I and L, RNA-binding proteins with no previously known role in metabolic reprogramming. UCA1 and hnRNP I/L profoundly affected glycolysis, TCA cycle, glutaminolysis, and viability of BLCA cells. Importantly, UCA1 specifically bound to and facilitated the combination of hnRNP I/L to the promoter of glutamic pyruvate transaminase 2 (GPT2) gene, resulting in upregulated expression of GPT2 and enhanced glutamine-derived carbons in the TCA cycle. We also systematically confirmed the influence of UCA1, hnRNP I/L, and GPT2 on metabolism and proliferation via glutamine-driven anaplerosis in BLCA cells. Conclusions: Our study reveals the critical mechanism by which UCA1 forms a functional UCA1-hnRNP I/L complex that upregulates GPT2 expression to promote glutamine-driven TCA cycle anaplerosis, providing novel evidence that lncRNA regulates metabolic reprogramming in tumor cells.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Lijuan Hou ◽  
Jin Xie ◽  
Yaoyao Wu ◽  
Jiaojiao Wang ◽  
Anqi Duan ◽  
...  

Abstract Background Only 1.5% of the human genome encodes proteins, while large part of the remaining encodes noncoding RNAs (ncRNA). Many ncRNAs form structures and perform many important functions. Accurately identifying structured ncRNAs in the human genome and discovering their biological functions remain a major challenge. Results Here, we have established a pipeline (CM-line) with the following features for analyzing the large genomes of humans and other animals. First, we selected species with larger genetic distances to facilitate the discovery of covariations and compatible mutations. Second, we used CMfinder, which can generate useful alignments even with low sequence conservation. Third, we removed repetitive sequences and known structured ncRNAs to reduce the workload of CMfinder. Fourth, we used Infernal to find more representatives and refine the structure. We reported 11 classes of structured ncRNA candidates with significant covariations in humans. Functional analysis showed that these ncRNAs may have variable functions. Some may regulate circadian clock genes through poly (A) signals (PAS); some may regulate the elongation factor (EEF1A) and the T-cell receptor signaling pathway by cooperating with RNA binding proteins. Conclusions By searching for important features of RNA structure from large genomes, the CM-line has revealed the existence of a variety of novel structured ncRNAs. Functional analysis suggests that some newly discovered ncRNA motifs may have biological functions. The pipeline we have established for the discovery of structured ncRNAs and the identification of their functions can also be applied to analyze other large genomes.


2019 ◽  
Vol 116 (33) ◽  
pp. 16410-16419 ◽  
Author(s):  
Nadiya Khyzha ◽  
Melvin Khor ◽  
Peter V. DiStefano ◽  
Liangxi Wang ◽  
Ljubica Matic ◽  
...  

Atherosclerosis is a chronic inflammatory disease that is driven, in part, by activation of vascular endothelial cells (ECs). In response to inflammatory stimuli, the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway orchestrates the expression of a network of EC genes that contribute to monocyte recruitment and diapedesis across the endothelium. Although many long noncoding RNAs (lncRNAs) are dysregulated in atherosclerosis, they remain poorly characterized, especially in the context of human vascular inflammation. Prior studies have illustrated that lncRNAs can regulate their neighboring protein-coding genes via interaction with protein complexes. We therefore identified and characterized neighboring interleukin-1β (IL-1β)−regulated messenger RNA (mRNA)−lncRNA pairs in ECs. We found these pairs to be highly correlated in expression, especially when located within the same chromatin territory. Additionally, these pairs were predominantly divergently transcribed and shared common gene regulatory elements, characterized by active histone marks and NF-κB binding. Further analysis was performed on lncRNA-CCL2, which is transcribed divergently to the gene, CCL2, encoding a proatherosclerotic chemokine. LncRNA-CCL2 and CCL2 showed coordinate up-regulation in response to inflammatory stimuli, and their expression was correlated in unstable symptomatic human atherosclerotic plaques. Knock-down experiments revealed that lncRNA-CCL2 positively regulated CCL2 mRNA levels in multiple primary ECs and EC cell lines. This regulation appeared to involve the interaction of lncRNA-CCL2 with RNA binding proteins, including HNRNPU and IGF2BP2. Hence, our approach has uncovered a network of neighboring mRNA−lncRNA pairs in the setting of inflammation and identified the function of an lncRNA, lncRNA-CCL2, which may contribute to atherogenesis in humans.


Sign in / Sign up

Export Citation Format

Share Document