scholarly journals Evaluation of the microbial community structure of potable water samples from occupied and unoccupied buildings using16S rRNA amplicon sequencing

2020 ◽  
Author(s):  
Kimothy L Smith ◽  
Howard A Shuman ◽  
Douglas Findeisen

AbstractWe conducted two studies of water samples from buildings with normal occupancy and water usage compared to water from buildings that were unoccupied with little or no water usage due to the COVID-19 shutdown. Study 1 had 52 water samples obtained ad hoc from buildings in four metropolitan locations in different states in the US and a range of building types. Study 2 had 36 water samples obtained from two buildings in one metropolitan location with matched water sample types. One of the buildings had been continuously occupied, and the other substantially vacant for approximately 3 months. All water samples were analyzed using 16S rRNA amplicon sequencing with a MinION from Oxford Nanopore Technologies. More than 127 genera of bacteria were identified, including genera with members that are known to include more than 50 putative frank and opportunistic pathogens. While specific results varied among sample locations, 16S rRNA amplicon abundance and the diversity of bacteria were higher in water samples from unoccupied buildings than normally occupied buildings as was the abundance of sequenced amplicons of genera known to include pathogenic bacterial members. In both studies Legionella amplicon abundance was relatively small compared to the abundance of the other bacteria in the samples. Indeed, when present, the relative abundance of Legionella amplicons was lower in samples from unoccupied buildings. Legionella did not predominate in any of the water samples and were found, on average, in 9.6% of samples in Study 1 and 8.3% of samples in Study 2.SynopsisComparison of microbial community composition in the plumbing of occupied and unoccupied buildings during the COVID-19 pandemic shutdown.

2021 ◽  
Author(s):  
Zubia Rashid ◽  
Muhammad Zubair Yousaf ◽  
Syed Muddassar Hussain Gilani ◽  
Sitwat Zehra ◽  
Ashaq Ali ◽  
...  

Abstract Antibiotic resistance poses a serious threat to human and animal health. As a consequence, their use in conventional poultry feed may be replaced by non-antibiotic additives (alternatives to antibiotics, ATAs). Phytogenic feed additives and organic acids have been gaining considerable attention that could abate the proliferation of pathogenic bacteria and strengthen gut function in broiler chickens. The aim of this study was to evaluate the effects of phytogenic feed additives and organic acids on cecal microbial diversity using 16S rRNA amplicon sequencing of the V3-V4 region. In this study, 240 chicks were divided into five treatments comprising: a controlled basal diet (CON), antibiotic group (AB), phytogenic feed additives (PHY), organic acids (ORG) and a combination of PHY + ORG (COM). A distinctive microbial community structure was observed amongst different treatments with an increased microbial diversity in AB, ORG and COM (p < 0.05). The synergistic effects of PHY and ORG increased the population of beneficial bacteria that belonged to the phyla: Firmicutes, Bacteroides and Proteobacteria in the cecum. The presence of the species Akkermansia muciniphila (involved in mucin degradation) and Bacillus safensis (a probiotic bacterium) were noticed in COM and PHY, respectively. Clustering analysis revealed a higher relative abundance of similar microbial community composition between AB and ORG groups. In conclusion, treatments with PHY and ORG modified the relative abundance and presence/absence of specific microbiota in the chicken cecum. Hence, cecal microbiota modulation through diet is a promising strategy to reduce cross-contamination of zoonotic poultry pathogens.


2021 ◽  
Author(s):  
Shan Sun ◽  
Xiangzhu Zhu ◽  
Xiang Huang ◽  
Harvey J. Murff ◽  
Reid M. Ness ◽  
...  

AbstractThe gut microbiota plays an important role in human health and disease. Stool, swab and mucosal tissue samples have been used in individual studies to survey the microbial community but the consequences of using these different sample types are not completely understood. We previously reported differences in microbial community composition with 16S rRNA amplicon sequencing between stool, swab and mucosal tissue samples. Here, we extended the previous study to a larger cohort and performed shotgun metagenome sequencing of 1,397 stool, swab and mucosal tissue samples from 240 participants. Consistent with previous results, taxonomic composition of stool and swab samples was distinct, but still more similar to each other than mucosal tissue samples, which had a substantially different community composition, characterized by a high relative abundance of the mucus metabolizers Bacteroides and Subdoligranulum, as well as bacteria with higher tolerance for oxidative stress such as Escherichia. As has been previously reported, functional profiles were more uniform across sample types than taxonomic profiles with differences between stool and swab samples smaller, but mucosal tissue samples remained distinct from the other two types. When the taxonomic and functional profiles of different sample types were used for inference in association with host phenotypes of age, sex, body mass index (BMI), antibiotics or non-steroidal anti-inflammatory drugs (NSAIDs) use, hypothesis testing using either stool or swab gave broadly similar results, but inference performed on mucosal tissue samples gave results that were generally less consistent with either stool or swab. Our study represents an important resource for the experimental design of studies aimed to understand microbiota perturbations specific to defined micro niches within the human intestinal tract.


2019 ◽  
Vol 3 (2) ◽  
Author(s):  
J. R. Levey ◽  
I. Geornaras ◽  
D. Woerner ◽  
J. Prenni ◽  
J. L. Metcalf ◽  
...  

ObjectivesDegradation due to microbial and chemical mechanisms occurs throughout the storage life of ground beef. These pathways are intertwined and the microbial community and the volatile organic acids (VOCs) that evolve in ground beef are dynamic. Evaluation of microbial growth using traditional culture-dependent techniques can be misleading due to the presence of unculturable organisms. Therefore, utilizing culture-independent techniques allows for a more thorough understanding of the microbial community within a meat matrix during storage life. The objective of this study was to employ 16s rRNA amplicon sequencing and VOC identification using GC–MS to explore diversity and changes of the microbial community and VOC production during shelf-life of ground beef.Materials and MethodsFinely ground beef (80/20) was procured from beef processing facilities in the West (one lot) and Midwest (two lots). The lots were separated into three physically separate replicates. Ground beef lots were transported in chub packaging to Colorado State University (Fort Collins, CO), and the chubs were stored in the dark at 2°C for either 16/17 d or 23/24 d. After dark storage, chubs were reground, and 454 g fluff-packs were placed on polystyrene trays before overwrapping with polyvinyl chloride film. The trays were placed in retail display cases maintained at 2–4°C for 5 d. Samples were collected every day of retail display for evaluation of the microbial community and VOC development. Following standardized extraction, 16S rRNA amplicon sequencing was used to explore microbial communities. Sequencing data were analyzed using the programs in the QIIME2 (version 2018.4) pipeline. Similarly, volatile organic compounds were extracted prior to analysis of targeted VOCs using a GC–MS. The project was designed as a split-plot design and was analyzed using R packages (version 3.4.3), lme4, lmerTest, and emmeans. Least squares means were separated using an α of 0.05.ResultsThe top orders of bacteria found in the meat samples were from Enterobacteriales, Lactobacillales, and Pseudomonadales. No differences (P ≥ 0.05) in Faith’s Phylogenetic Diversity Index, or a measure of diversity of the bacterial species within a sample, were observed between Days 0, 2, and 4 of retail case display. A targeted analysis identified eighteen VOCs associated with ground beef spoilage. In previous studies, the presence of hexanal, acetoin and acetic acid are identified as spoilage indicators. Hexanal, Acetoin and acetic acid increased (P ≤ 0.05) over the 5 d of retail display.ConclusionThe use of 16s rRNA amplicon sequencing technology is a relatively recent tool that has rapidly advanced the study of microbial deterioration during beef storage and shelf-life. Moreover, the combination of 16s rRNA amplicon sequencing and identification of VOCs in this study, afforded an exploration of the relationship between chemical and biological changes which occur during ground beef storage. These analytical technologies, when used in unison, can highlight the dynamic relationships and evolution of chemical and biological constituents in ground beef. Further research in ground beef shelf-life should incorporate such measures.


2022 ◽  
Vol 8 ◽  
Author(s):  
Peihang Xu ◽  
Christian Furbo Reeder ◽  
Carolin Regina Löscher

Microbial plankton is essential for ocean biogeochemistry. As part of the prokaryotic phototrophic microbial community, both oxygenic phototrophs (OP) and anoxygenic phototrophs (AP) are widely distributed in the ocean and may play a significant role in carbon flow and oxygen production. However, comparative studies of microbial OP and AP have received very little attention, even though their different roles might be important in various marine environments, especially in oxygen minimum zones (OMZ). We explored the spatial distribution of the microbial community in the Baltic Sea, including an OMZ region, with a particular focus on the distribution and activity of OP and AP. We used 16S rRNA amplicon sequencing in combination with a qPCR-based quantification of photosynthesis marker genes. We found that specific bacterial groups dominated surface and intermediate depths, the OMZ, and deep waters, respectively. Salinity, temperature, oxygen, and depth were significant factors explaining the microbial community composition and distribution. A high diversity of OP and AP was observed, including OP-Chlorophyta, Diatoms, Cyanobacteria and Cryptomonads, and AP-Proteobacteria and Chloroflexota. OP were more abundant at most stations compared to AP. OP showed high photosynthetic activity and more photosynthesis activity in higher temperature and upper waters, while AP photosynthesis cannot be detected in most stations. Both, cyanobacterial and eukaryotic OP preferred to live in higher temperature and upper waters, but Cyanobacteria also preferred to live in oxic water while the whole OP community showed preference to live in higher salinity area. However, AP did not show any significant hydrochemical preference but prefer to live with OP community. The Baltic Sea is exposed to multiple climate change related stressors, such as warming, decreasing salinity, and deoxygenation. This study contributes to understanding and interpretation of how microbial community, especially phototrophic groups, might shift in their distribution and activity in a changing ocean like the Baltic Sea.


2020 ◽  
Author(s):  
Adi Yulandi ◽  
Antonius Suwanto ◽  
Diana Elizabeth Waturangi ◽  
Aris Tri Wahyudi

Abstract Objective: Amplicon sequencing targeting 16S ribosomal RNA (rRNA) has been widely used for the profile analysis of the microbial community from fermented food samples. Previous results of 16S rRNA analysis metagenome showed that Firmicutes was the dominant phylum in tempeh. However, polymerase chain reaction (PCR) steps on amplicon sequencing analysis and intragenomic heterogeneity within 16S rRNA are believed to contribute to bias in the estimation of microbial community composition. An alternative approach known as shotgun metagenomic might be able to avoid this limitation. In this study, we employed total metagenomic DNA fragments that were sequenced directly for taxonomic dan functional profiling analysis.Results: Taxonomic profiling showed that Proteobacteria, Firmicutes, and Bacteroidetes were the dominant phyla from the direct shotgun metagenomic analysis in all tempeh samples. In terms of composition, this shotgun metagenomic study revealed that Proteobacteria was the most abundant phylum. Functional profiling showed that iron complex outer-membrane recepter protein (KEGG ID: K02014) was the most transcribed genes based in this metagenomic analysis. The binning pipeline could reveal almost complete whole genome sequence of Lactobacillus fermentum, Enterococcus cecorum, Escherichia coli, Klebsiella pneumoniae, and Acinetobacter baumannii.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Evan T Saitta ◽  
Renxing Liang ◽  
Maggie CY Lau ◽  
Caleb M Brown ◽  
Nicholas R Longrich ◽  
...  

Fossils were thought to lack original organic molecules, but chemical analyses show that some can survive. Dinosaur bone has been proposed to preserve collagen, osteocytes, and blood vessels. However, proteins and labile lipids are diagenetically unstable, and bone is a porous open system, allowing microbial/molecular flux. These ‘soft tissues’ have been reinterpreted as biofilms. Organic preservation versus contamination of dinosaur bone was examined by freshly excavating, with aseptic protocols, fossils and sedimentary matrix, and chemically/biologically analyzing them. Fossil ‘soft tissues’ differed from collagen chemically and structurally; while degradation would be expected, the patterns observed did not support this. 16S rRNA amplicon sequencing revealed that dinosaur bone hosted an abundant microbial community different from lesser abundant communities of surrounding sediment. Subsurface dinosaur bone is a relatively fertile habitat, attracting microbes that likely utilize inorganic nutrients and complicate identification of original organic material. There exists potential post-burial taphonomic roles for subsurface microorganisms.


2018 ◽  
Vol 7 (21) ◽  
Author(s):  
Claudia Ibacache-Quiroga ◽  
Juan Ojeda ◽  
M. Alejandro Dinamarca

The Quintero Bay, located along the central coast of Chile, has suffered different oil spills during the past 5 years, impacting marine ecosystems. This report describes the microbial community structure of seawater samples obtained from the Quintero Bay through 16S rRNA amplicon sequencing.


2020 ◽  
Author(s):  
Adi Yulandi ◽  
Diana Elizabeth Waturangi ◽  
Aris Tri Wahyudi ◽  
Antonius Suwanto

AbstractObjectiveAmplicon sequencing targeted 16S ribosomal RNA (rRNA) has been widely used for the analysis profile of the microbial community from fermented food samples. Previous results of 16S rRNA analysis metagenome showed that Firmicutes was the dominant phylum in tempeh. However, polymerase chain reaction (PCR) steps on amplicon sequencing analysis and intragenomic heterogeneity within 16S rRNA are believed to contribute to bias in the estimation of microbial community composition. An alternative approach known as shotgun metagenomic might be able to avoid this limitation. In this study, we employed total metagenomic DNA fragments sequenced directly for taxonomic dan functional profiling analysis.ResultTaxonomic profiling showed that Proteobacteria, Firmicutes, and Bacteroidetes were the dominant phyla from direct shotgun metagenomic analysis in all tempeh samples. In terms of composition, the shotgun metagenomic study revealed that Proteobacteria was the most relatively abundant phylum. Functional profiling showed that iron complex outer-membrane recepter protein (KEGG ID: K02014) was the most transcribed genes based on metagenome from tempeh samples.


Sign in / Sign up

Export Citation Format

Share Document