scholarly journals Hosts, parasites, and their interactions respond to climatic variables

2016 ◽  
Author(s):  
Timothée Poisot ◽  
Cynthia Guéveneux-Julien ◽  
Marie-Josée Fortin ◽  
Dominique Gravel ◽  
Pierre Legendre

Aim: Although there is a vast body of literature on the causes of variation in species composition in ecological communities, less effort has been invested in understanding how interactions between these species vary. Since interactions are crucial to the structure and functioning of ecological communities, we need to develop a better understanding of their spatial distribution. Here, we investigate whether species interactions vary more in response to different climate variables, than individual species do. Location: Eurasia. Time period: 2000s. Major taxa: Animalia. Methods: We used a measure of Local Contribution to Beta-Diversity to evaluate the compositional uniqueness of 51 host–parasite communities of rodents and their ectoparasitic fleas across Eurasia, using publicly available data. We measured uniqueness based on the species composition, and based on potential and realized biotic interactions (here, host-parasite interactions). Results: We show that species interactions vary more, across space, than species do. In particular, we show that species interactions respond to some climatic variables that have no effect on species distributions or dissimilarity. Main conclusions: Species interactions capture some degree of variation which is not apparent when looking at species occurrences only. In this system, this appeared as hosts and parasites interacting in different ways as a reponse to different environments, especially the temperature and dryness. We discuss the implications of this finding for the amount of information that should be considered when measuring community dissimilarity.

2020 ◽  
Author(s):  
Paul J. CaraDonna ◽  
Nickolas M. Waser

AbstractEcological communities consist of species that are joined in complex networks of interspecific interaction. The interactions that networks depict often form and dissolve rapidly, but this temporal variation is not well integrated into our understanding of the causes and consequences of network structure. If interspecific interactions exhibit temporal flexibility across time periods over which organisms co-occur, then the emergent structure of the corresponding network may also be temporally flexible, something that a temporally-static perspective would miss. Here, we use an empirical system to examine short-term flexibility in network structure (connectance, nestedness, and specialization), and in individual species interactions that contribute to that structure. We investigated weekly plant-pollinator networks in a subalpine ecosystem across three summer growing seasons. To link the interactions of individual species to properties of their networks, we examined weekly temporal variation in species’ contributions to network structure. As a test of the potential robustness of networks to perturbation, we also simulated the random loss of species from weekly networks. We then compared the properties of weekly networks to the properties of cumulative networks that aggregate field observations over each full season. A week-to-week view reveals considerable flexibility in the interactions of individual species and their contributions to network structure. For example, species that would be considered relatively generalized across their entire activity period may be much more specialized at certain times, and at no point as generalized as the cumulative network may suggest. Furthermore, a week-to-week view reveals corresponding temporal flexibility in network structure and potential robustness throughout each summer growing season. We conclude that short-term flexibility in species interactions leads to short-term variation in network properties, and that a season-long, cumulative perspective may miss important aspects of the way in which species interact, with implications for understanding their ecology, evolution, and conservation.


2015 ◽  
Vol 31 (5) ◽  
pp. 413-421 ◽  
Author(s):  
Amanda Taylor ◽  
Kevin Burns

Abstract:The importance of deterministic and stochastic processes in structuring ecological communities is an enduring debate. Although this debate is nearly a century old, the extent to which communities are structured by species interactions or chance events is a central issue in ecology. We examined the assemblages of plants living inside 119 birds’ nest ferns (Asplenium goudeyi), which are endemic to Lord Howe Island. Specifically, we investigated whether patterns of species richness and community composition were influenced by fern size, fern isolation and plant dispersal abilities. Fern size and fern isolation significantly predicted plant community richness. At the community level, plant composition patterns did not deviate from randomized expectations. Individual species occurrences increased with increasing community richness, and no species exclusions were observed. Wind-dispersed taxa, which accounted for 29% of all species, were well represented in isolated ferns. Comparatively, poorer dispersers were confined to ferns nearest the forest at the base of the cliffs. We suggest that dispersal plays a key role in structuring plant communities living within birds’ nest ferns, and that species interactions are less important. Our study emphasizes the importance of epiphytes with a nest-like growth form as habitat for plants in a harsh environment.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7013
Author(s):  
Daniela N. López ◽  
Patricio A. Camus ◽  
Nelson Valdivia ◽  
Sergio A. Estay

Community similarity is often assessed through similarities in species occurrences and abundances (i.e., compositional similarity) or through the distribution of species interactions (i.e., interaction similarity). Unfortunately, the joint empirical evaluation of both is still a challenge. Here, we analyze community similarity in ecological systems in order to evaluate the extent to which indices based exclusively on species composition differ from those that incorporate species interactions. Borrowing tools from graph theory, we compared the classic Jaccard index with the graph edit distance (GED), a metric that allowed us to combine species composition and interactions. We found that similarity measures computed using only taxonomic composition could differ strongly from those that include composition and interactions. We conclude that new indices that incorporate community features beyond composition will be more robust for assessing similitude between natural systems than those purely based on species occurrences. Our results have therefore important conceptual and practical consequences for the analysis of ecological communities.


Parasitology ◽  
2017 ◽  
Vol 144 (6) ◽  
pp. 817-822 ◽  
Author(s):  
KATHERINE M. POCHINI ◽  
JASON T. HOVERMAN

SUMMARYAcross host–parasite systems, there is evidence that pesticide exposure increases parasite loads and mortality following infection. However, whether these effects are driven by reductions in host resistance to infection or slower rates of parasite clearance is often unclear. Using controlled laboratory experiments, we examined the ability of larval northern leopard frogs (Lithobates pipiens) and American toads (Anaxyrus americanus) to resist and clear trematode (Echinoparyphium sp.) infections following exposure to the insecticide carbaryl. Northern leopard frogs exposed to 1 mg L−1 of carbaryl had 61% higher parasite loads compared with unexposed individuals, while there was no immediate effect of carbaryl on parasite encystment in American toads. However, when tadpoles were exposed to carbaryl and moved to freshwater for 14 days before the parasite challenge, we recovered 37 and 63% more parasites from carbaryl-exposed northern leopard frogs and American toads, respectively, compared with the control. No effects on clearance were found for either species. Collectively, our results suggest that pesticide exposure can reduce the ability of amphibians to resist parasite infections and that these effects can persist weeks following exposure. It is critical for researchers to incorporate species interactions into toxicity studies to improve our understanding of how contaminants affect ecological communities.


Author(s):  
Rafael Pinheiro ◽  
Leonardo Jorge ◽  
Thomas Lewinsohn

Within biological communities, species interact in a wide variety of ways. Species interactions have always been noted and classified by naturalists in describing living organisms and their ways. Moreover, they are essential to characterize ecological communities as functioning entities. Biodiversity databases, as a rule, are comprised of species records in certain localities and times. Many, if not most, originated as databases of museum specimens and/or published records. As such, they provide data on species occurrences and distribution, with little functional information. Currently, online databases for species interaction data are being formed or proposed. Usually, these databases set out to compile data from actual field studies, and their design reflects the singularities of particular studies that seed their development. In two online databases: the Web of Life (2021) and the Interaction Web DataBase (2020) (IWDB), the categories of interactions are quite heterogeneous (Table 1). For instance, they may refer explicitly to certain taxonomic groups (e.g., anemone-fish), or do so implicitly (host-parasitoid; parasitoids are all holometabolous insects with arthropod hosts); conversely, they may encompass almost any taxon (food webs). In another example, the Global Biotic Interactions database (Poelen et al. 2014) (GloBI) offers a choice of relational attributes when entering data, ranging from undefined to quite restricted (Table 2). Here we intend to contribute to the development of interaction databases, from two different points of view. First, what categories can be effectively applied to field observations of biotic interactions? Second, what theoretical and applied questions do we expect to address with interaction databases? These should be equally applicable to comparisons of studies of the same kind or mode of interaction, and to contrasts between interactions in multimodal studies.


2015 ◽  
Author(s):  
Timothée Poisot ◽  
Daniel B. Stouffer

Both species and their interactions are affected by changes that occur at evolutionary time-scales, and these changes shape both ecological communities and their phylogenetic structure. That said, extant ecological community structure is contingent upon random chance, environmental filters, and local effects. It is therefore unclear how much ecological signal local communities should retain. Here we show that, in a host–parasite system where species interactions vary substantially over a continental gradient, the ecological significance of individual interactions is maintained across different scales. Notably, this occurs despite the fact that observed community variation at the local scale frequently tends to weaken or remove community-wide phylogenetic signal. When considered in terms of the interplay between community ecology and coevolutionary theory, our results demonstrate that individual interactions are capable and indeed likely to show a consistent signature of past evolutionary history even when woven into communities that do not.


2014 ◽  
Vol 25 (3-4) ◽  
pp. 53-68
Author(s):  
I. V. Goncharenko ◽  
H. M. Holyk

Cenotic diversity and leading ecological factors of its floristic differentiation were studied on an example of two areas – Kyiv parks "Nivki" and "Teremki". It is shown that in megalopolis the Galeobdoloni-Carpinetum impatientosum parviflorae subassociation is formed under anthropogenic pressure on the typical ecotope of near-Dnieper hornbeam oak forests on fresh gray-forest soils. The degree of anthropogenic transformation of cenofloras can be estimated by the number of species of Robinietea and Galio-Urticetea classes, as well as neophytes and cultivars. Phytoindication for hemeroby index may be also used in calculation. We propose the modified index of biotic dispersion (normalized by alpha-diversity) for the estimation of ecophytocenotic range (beta-diversity) of releves series. We found that alpha-diversity initially increases (due to the invasion of antropophytes) at low level of antropogenic pressure, then it decreases (due to the loss of aboriginal species) secondarily with increasing of human impact. Also we found that beta-diversity (differential diversity) decreases, increasing homogeneity of plant cover, under the influence of anthropogenic factor. Vegetation classification was completed by a new original method of cluster analysis, designated as DRSA («distance-ranked sorting assembling»). The classification quality is suggested to be validated on the "seriation" diagram, which is а distance matrix between objects with gradient filling. Dark diagonal blocks confirm clusters’ density (intracluster compactness), uncolored off-diagonal blocks are evidence in favor of clusters’ isolation (intercluster distinctness). In addition, distinction of clusters (syntaxa) in ordination area suggests their independence. For phytoindication we propose to include only species with more than 10% constancy. Furthermore, for the description of syntaxonomic amplitude we suggest to use 25%-75% interquartile scope instead of mean and standard deviation. It is shown that comparative analysis of syntaxa for each ecofactor is convenient to carry out by using violin (bulb) plots. A new approach to the phytoindication of syntaxa, designated as R-phytoindication, was proposed for our study. In this case, the ecofactor values, calculated for individual releves, are not taken into account, however, the composition of cenoflora with species constancies is used that helps us to minimize for phytoindication the influence of non-typical species. We suggested a syntaxon’s amplitude to be described by more robust statistics: for the optimum of amplitude (central tendency) – by a median (instead of arithmetic mean), and for the range of tolerance – by an interquartile scope (instead of standard deviation). We assesses amplitudes of syntaxa by phytoindication method for moisture (Hd), acidity (Rc), soil nitrogen content (Nt), wetting variability (vHd), light regime (Lc), salt regime (Sl). We revealed no significant differences on these ecofactors among ecotopes of our syntaxa, that proved the variant syntaxonomic rank for all syntaxa. We found that the core of species composition of our phytocenoses consists of plants with moderate requirements for moisture, soil nitrogen, light and salt regime. We prove that the leading factor of syntaxonomic differentiation is hidden anthropogenic, which is not subject to direct measurement. But we detect that hidden factor of "human pressure" was correlated with phytoindication parameters (variables) that can be measured "directly" by species composition of plant communities. The most correlated factors were ecofactors of soil nitrogen, wetting variability, light regime and hemeroby. The last one is the most indicative empirically for the assessment of "human impact". We establish that there is a concept of «hemeroby of phytocenosis» (tolerance to human impact), which can be calculated approximately as the mean or the median of hemeroby scores of individual species which are present in it.


Parasitology ◽  
2007 ◽  
Vol 134 (10) ◽  
pp. 1363-1367 ◽  
Author(s):  
E. R. HAINE ◽  
S. MOTREUIL ◽  
T. RIGAUD

SUMMARYVertically transmitted parasites may have positive, neutral or negative effects on host fitness, and are also predicted to exhibit sex-specific virulence to increase the proportion or fitness of the transmitting sex. We investigated these predictions in a study on the survival and sex ratio of offspring of the amphipod Gammarus roeseli from females infected by the vertically transmitted microsporidia Nosema granulosis. We found, to our knowledge, the first evidence for a positive relationship between N. granulosis infection and host survival. Infection was associated with sex ratio distortion, not by male-killing, but probably by parasite-induced feminization of putative G. roeseli males. This microsporidia also feminizes another amphipod host, Gammarus duebeni, which is phylogenetically and biogeographically distant from G. roeseli. Our study suggests that the reproductive system of gammarids is easily exploited by these vertically-transmitted parasites, although the effects of infections on host fitness may depend on specific host-parasite species interactions.


Author(s):  
Lorena Lanthemann ◽  
Sofia van Moorsel

Duckweeds (Lemnaceae) are increasingly studied for their potential for phytoremediation of heavy-metal polluted water bodies. A prerequisite for metal removal, however, is the tolerance of the organism to the pollutant, e.g., the metal zinc (Zn). Duckweeds have been shown to differ in their tolerances to Zn, however, despite them most commonly co-occurring with other species, there is a lack of research concerning the effect of species interactions on Zn tolerance. Here we tested whether the presence of a second species influenced the growth rate of the three duckweed species Lemna minor, Lemna gibba, and Lemna turionifera. We used four different Zn concentrations in a replicated microcosm experiment under sterile conditions, either growing the species in isolation or in a 2-species mixture. The response to Zn differed between species, but all three species showed a high tolerance to Zn, with low levels of Zn even increasing the growth rates. The growth rates of the individual species were influenced by the identity of the competing species, but this was independent of the Zn concentration. Our results suggest that species interactions should be considered in future research with duckweeds and that several duckweed species have high tolerance to metal pollution, making them candidates for phytoremediation efforts.


2019 ◽  
Author(s):  
Stephen P. De Lisle ◽  
Gonzalo Hernando ◽  
Daniel I. Bolnick

AbstractWithin-species variation is a salient feature of natural populations, of substantial importance for species interactions. However, the community consequences of sexual dimorphism, one of the most ubiquitous sources of within-species variance, remains poorly understood. Here, we extend classical models of consumer-resource dynamics to explore the ecological consequences of consumer sexual dimorphism. We show that sexual dimorphism in consumer attack rates on two different resource species promotes coexistence between those resources, mitigating the effects of both apparent competition and direct interspecific competition. Consumer sexual dimorphism can prevent exclusion of a resource with inferior growth rates because reduction in any of the two resources reduces consumer density, generating negative frequency dependence that stabilizes coexistence between resources. Our work highlights ecological sex differences as a potentially key factor governing the assembly of ecological communities, illustrating that the specific source of within-species variance can have important implications for community ecology.


Sign in / Sign up

Export Citation Format

Share Document