Plant composition patterns inside an endemic birds’ nest fern (Asplenium goudeyi) on Lord Howe Island: effects of fern size, fern isolation and plant dispersal abilities

2015 ◽  
Vol 31 (5) ◽  
pp. 413-421 ◽  
Author(s):  
Amanda Taylor ◽  
Kevin Burns

Abstract:The importance of deterministic and stochastic processes in structuring ecological communities is an enduring debate. Although this debate is nearly a century old, the extent to which communities are structured by species interactions or chance events is a central issue in ecology. We examined the assemblages of plants living inside 119 birds’ nest ferns (Asplenium goudeyi), which are endemic to Lord Howe Island. Specifically, we investigated whether patterns of species richness and community composition were influenced by fern size, fern isolation and plant dispersal abilities. Fern size and fern isolation significantly predicted plant community richness. At the community level, plant composition patterns did not deviate from randomized expectations. Individual species occurrences increased with increasing community richness, and no species exclusions were observed. Wind-dispersed taxa, which accounted for 29% of all species, were well represented in isolated ferns. Comparatively, poorer dispersers were confined to ferns nearest the forest at the base of the cliffs. We suggest that dispersal plays a key role in structuring plant communities living within birds’ nest ferns, and that species interactions are less important. Our study emphasizes the importance of epiphytes with a nest-like growth form as habitat for plants in a harsh environment.

2020 ◽  
Author(s):  
Paul J. CaraDonna ◽  
Nickolas M. Waser

AbstractEcological communities consist of species that are joined in complex networks of interspecific interaction. The interactions that networks depict often form and dissolve rapidly, but this temporal variation is not well integrated into our understanding of the causes and consequences of network structure. If interspecific interactions exhibit temporal flexibility across time periods over which organisms co-occur, then the emergent structure of the corresponding network may also be temporally flexible, something that a temporally-static perspective would miss. Here, we use an empirical system to examine short-term flexibility in network structure (connectance, nestedness, and specialization), and in individual species interactions that contribute to that structure. We investigated weekly plant-pollinator networks in a subalpine ecosystem across three summer growing seasons. To link the interactions of individual species to properties of their networks, we examined weekly temporal variation in species’ contributions to network structure. As a test of the potential robustness of networks to perturbation, we also simulated the random loss of species from weekly networks. We then compared the properties of weekly networks to the properties of cumulative networks that aggregate field observations over each full season. A week-to-week view reveals considerable flexibility in the interactions of individual species and their contributions to network structure. For example, species that would be considered relatively generalized across their entire activity period may be much more specialized at certain times, and at no point as generalized as the cumulative network may suggest. Furthermore, a week-to-week view reveals corresponding temporal flexibility in network structure and potential robustness throughout each summer growing season. We conclude that short-term flexibility in species interactions leads to short-term variation in network properties, and that a season-long, cumulative perspective may miss important aspects of the way in which species interact, with implications for understanding their ecology, evolution, and conservation.


2016 ◽  
Author(s):  
Timothée Poisot ◽  
Cynthia Guéveneux-Julien ◽  
Marie-Josée Fortin ◽  
Dominique Gravel ◽  
Pierre Legendre

Aim: Although there is a vast body of literature on the causes of variation in species composition in ecological communities, less effort has been invested in understanding how interactions between these species vary. Since interactions are crucial to the structure and functioning of ecological communities, we need to develop a better understanding of their spatial distribution. Here, we investigate whether species interactions vary more in response to different climate variables, than individual species do. Location: Eurasia. Time period: 2000s. Major taxa: Animalia. Methods: We used a measure of Local Contribution to Beta-Diversity to evaluate the compositional uniqueness of 51 host–parasite communities of rodents and their ectoparasitic fleas across Eurasia, using publicly available data. We measured uniqueness based on the species composition, and based on potential and realized biotic interactions (here, host-parasite interactions). Results: We show that species interactions vary more, across space, than species do. In particular, we show that species interactions respond to some climatic variables that have no effect on species distributions or dissimilarity. Main conclusions: Species interactions capture some degree of variation which is not apparent when looking at species occurrences only. In this system, this appeared as hosts and parasites interacting in different ways as a reponse to different environments, especially the temperature and dryness. We discuss the implications of this finding for the amount of information that should be considered when measuring community dissimilarity.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7013
Author(s):  
Daniela N. López ◽  
Patricio A. Camus ◽  
Nelson Valdivia ◽  
Sergio A. Estay

Community similarity is often assessed through similarities in species occurrences and abundances (i.e., compositional similarity) or through the distribution of species interactions (i.e., interaction similarity). Unfortunately, the joint empirical evaluation of both is still a challenge. Here, we analyze community similarity in ecological systems in order to evaluate the extent to which indices based exclusively on species composition differ from those that incorporate species interactions. Borrowing tools from graph theory, we compared the classic Jaccard index with the graph edit distance (GED), a metric that allowed us to combine species composition and interactions. We found that similarity measures computed using only taxonomic composition could differ strongly from those that include composition and interactions. We conclude that new indices that incorporate community features beyond composition will be more robust for assessing similitude between natural systems than those purely based on species occurrences. Our results have therefore important conceptual and practical consequences for the analysis of ecological communities.


Author(s):  
Lorena Lanthemann ◽  
Sofia van Moorsel

Duckweeds (Lemnaceae) are increasingly studied for their potential for phytoremediation of heavy-metal polluted water bodies. A prerequisite for metal removal, however, is the tolerance of the organism to the pollutant, e.g., the metal zinc (Zn). Duckweeds have been shown to differ in their tolerances to Zn, however, despite them most commonly co-occurring with other species, there is a lack of research concerning the effect of species interactions on Zn tolerance. Here we tested whether the presence of a second species influenced the growth rate of the three duckweed species Lemna minor, Lemna gibba, and Lemna turionifera. We used four different Zn concentrations in a replicated microcosm experiment under sterile conditions, either growing the species in isolation or in a 2-species mixture. The response to Zn differed between species, but all three species showed a high tolerance to Zn, with low levels of Zn even increasing the growth rates. The growth rates of the individual species were influenced by the identity of the competing species, but this was independent of the Zn concentration. Our results suggest that species interactions should be considered in future research with duckweeds and that several duckweed species have high tolerance to metal pollution, making them candidates for phytoremediation efforts.


2019 ◽  
Author(s):  
Stephen P. De Lisle ◽  
Gonzalo Hernando ◽  
Daniel I. Bolnick

AbstractWithin-species variation is a salient feature of natural populations, of substantial importance for species interactions. However, the community consequences of sexual dimorphism, one of the most ubiquitous sources of within-species variance, remains poorly understood. Here, we extend classical models of consumer-resource dynamics to explore the ecological consequences of consumer sexual dimorphism. We show that sexual dimorphism in consumer attack rates on two different resource species promotes coexistence between those resources, mitigating the effects of both apparent competition and direct interspecific competition. Consumer sexual dimorphism can prevent exclusion of a resource with inferior growth rates because reduction in any of the two resources reduces consumer density, generating negative frequency dependence that stabilizes coexistence between resources. Our work highlights ecological sex differences as a potentially key factor governing the assembly of ecological communities, illustrating that the specific source of within-species variance can have important implications for community ecology.


2019 ◽  
Author(s):  
Mark K. L. Wong ◽  
Benoit Guénard ◽  
Owen T. Lewis

AbstractInvasive insects represent major threats to ecosystems worldwide. Yet their effects on the functional dimension of biodiversity, measured as the diversity and distribution of traits, are overlooked. Such measures often determine the resilience of ecological communities and the ecosystem processes they modulate. The fire ant Solenopsis invicta is a highly problematic invasive species occurring on five continents. Its impacts on the taxonomic diversity of native ant communities have been studied but its impacts on their functional diversity are unknown. Comparing invaded and uninvaded plots in tropical grasslands of Hong Kong, we investigated how the presence of S. invicta affects the diversity and distribution of ant species and traits within and across communities, the functional identities of communities, and functionally unique species. We calculated the functional diversity of individual species, including the trait variation from intraspecific polymorphisms, and scaled up these values to calculate functional diversity at the community level. Invasion had only limited effects on species richness and functional richness, which were 13% and 8.5% lower in invaded communities respectively. In contrast, invasion had pronounced effects on taxonomic and functional composition due to turnover in species and trait values. Furthermore, invaded communities were functionally more homogeneous, displaying 23% less turnover and 56% more redundancy than uninvaded communities, as well as greater clustering and lower divergence in trait values. Invaded communities had fewer functionally-unique individuals and were characterized by ant species with narrower heads and bodies and shorter mandibles. Our results suggest that studies based only on taxonomic measures of diversity or indices describing trait variety risk underestimating the full ramifications of invasions. Investigating the diversity and distributions of traits at species, community and landscape levels can reveal the cryptic impacts of alien species which, despite causing little taxonomic change, may substantially modify the structure and functioning of ecological communities.


2018 ◽  
Vol 5 (4) ◽  
pp. 171503 ◽  
Author(s):  
Amanda M. Koltz ◽  
Niels M. Schmidt ◽  
Toke T. Høye

The Arctic is experiencing some of the fastest rates of warming on the planet. Although many studies have documented responses to such warming by individual species, the idiosyncratic nature of these findings has prevented us from extrapolating them to community-level predictions. Here, we leverage the availability of a long-term dataset from Zackenberg, Greenland (593 700 specimens collected between 1996 and 2014), to investigate how climate parameters influence the abundance of different arthropod groups and overall community composition. We find that variation in mean seasonal temperatures, winter duration and winter freeze–thaw events is correlated with taxon-specific and habitat-dependent changes in arthropod abundances. In addition, we find that arthropod communities have exhibited compositional changes consistent with the expected effects of recent shifts towards warmer active seasons and fewer freeze–thaw events in NE Greenland. Changes in community composition are up to five times more extreme in drier than wet habitats, with herbivores and parasitoids generally increasing in abundance, while the opposite is true for surface detritivores. These results suggest that species interactions and food web dynamics are changing in the Arctic, with potential implications for key ecosystem processes such as decomposition, nutrient cycling and primary productivity.


Ecology ◽  
2012 ◽  
Author(s):  
Herman A. Verhoef

At the beginning of the 20th century there was much debate about the “nature” of communities. The driving question was whether the community was a self-organized system of co-occurring species or simply a haphazard collection of populations with minimal functional integration. At that time, two extreme views dominated the discussion: one view considered a community as a superorganism, the member species of which were tightly bound together by interactions that contributed to repeatable patterns of species abundance in space and time. This concept led to the assumption that communities are fundamental entities, to be classified as the Linnaean taxonomy of species. Frederick E. Clements was one of the leading proponents of this approach, and his view became known as the organismic concept of communities. This assumes a common evolutionary history for the integrated species. The opposite view was the individualistic continuum concept, advocated by H. A. Gleason. His focus was on the traits of individual species that allow each to live within specific habitats or geographical ranges. In this view a community is an assemblage of populations of different species whose traits allow persisting in a prescribed area. The spatial boundaries are not sharp, and the species composition can change considerably. Consequently, it was discussed whether ecological communities were sufficiently coherent entities to be considered appropriate study objects. Later, consensus was reached: that properties of communities are of central interest in ecology, regardless of their integrity and coherence. From the 1950s and 1960s onward, the discussion was dominated by the deterministic outcome of local interactions between species and their environments and the building of this into models of communities. This approach, indicated as “traditional community ecology,” led to a morass of theoretical models, without being able to provide general principles about many-species communities. Early-21st-century approaches to bringing general patterns into community ecology concern (1) the metacommunity approach, (2) the functional trait approach, (3) evolutionary community ecology, and (4) the four fundamental processes. The metacommunity approach implicitly recognizes and studies the important role of spatiotemporal dynamics. In the functional trait approach, four themes are focused upon: traits, environmental gradients, the interaction milieu, and performance currencies. This functional, trait-focused approach should have a better prospect of understanding the effects of global changes. Evolutionary community ecology is an approach in which the combination of community ecology and evolutionary biology will lead to a better understanding of the complexity of communities and populations. The four fundamental processes are selection, drift, speciation, and dispersal. This approach concerns an organizational scheme for community ecology, based on these four processes to describe all existing specific models and frameworks, in order to make general statements about process–pattern connections.


2011 ◽  
Vol 278 (1717) ◽  
pp. 2486-2494 ◽  
Author(s):  
Nicholas F. Parnell ◽  
J. Todd Streelman

A long-standing debate in ecology addresses whether community composition is the result of stochastic factors or assembly rules. Non-random, over-dispersed patterns of species co-occurrence have commonly been attributed to competition—a particularly important force in adaptive radiation. We thus examined the macroecology of the recently radiated cichlid rock-fish assemblage in Lake Malawi, Africa at a spectrum of increasingly fine spatial scales (entire lake to depth within rock-reef sites). Along this range of spatial scales, we observed a signal of community structure (decreased co-occurrence of species) at the largest and smallest scales, but not in between. Evidence suggests that the lakewide signature of structure is driven by extreme endemism and micro-allopatric speciation, while patterns of reduced co-occurrence with depth are indicative of species interactions. We identified a ‘core’ set of rock-reef species, found in combination throughout the lake, whose depth profiles exhibited replicated positive and negative correlation. Our results provide insight into how ecological communities may be structured differently at distinct spatial scales, re-emphasize the importance of local species interactions in community assembly, and further elucidate the processes shaping speciation in this model adaptive radiation.


2016 ◽  
Vol 283 (1829) ◽  
pp. 20160354 ◽  
Author(s):  
Kimberly A. Selkoe ◽  
Oscar E. Gaggiotti ◽  
Eric A. Treml ◽  
Johanna L. K. Wren ◽  
Mary K. Donovan ◽  
...  

Conservation of ecological communities requires deepening our understanding of genetic diversity patterns and drivers at community-wide scales. Here, we use seascape genetic analysis of a diversity metric, allelic richness (AR), for 47 reef species sampled across 13 Hawaiian Islands to empirically demonstrate that large reefs high in coral cover harbour the greatest genetic diversity on average. We found that a species's life history (e.g. depth range and herbivory) mediates response of genetic diversity to seascape drivers in logical ways. Furthermore, a metric of combined multi-species AR showed strong coupling to species richness and habitat area, quality and stability that few species showed individually. We hypothesize that macro-ecological forces and species interactions, by mediating species turnover and occupancy (and thus a site's mean effective population size), influence the aggregate genetic diversity of a site, potentially allowing it to behave as an apparent emergent trait that is shaped by the dominant seascape drivers. The results highlight inherent feedbacks between ecology and genetics, raise concern that genetic resilience of entire reef communities is compromised by factors that reduce coral cover or available habitat, including thermal stress, and provide a foundation for new strategies for monitoring and preserving biodiversity of entire reef ecosystems.


Sign in / Sign up

Export Citation Format

Share Document