scholarly journals Cadm1 regulates airway stem cell growth and differentiation via modulation of Stat3 activity

2016 ◽  
Author(s):  
Pooja Seedhar ◽  
Elizabeth K Sage ◽  
Sabari Vallath ◽  
Gabrielle Sturges ◽  
Adam Giangreco

AbstractAirway homeostasis, repair, and regeneration are imperfectly understood processes involving the proliferation and differentiation of endogenous lung stem cells. Here, we establish that epithelial Cell adhesion molecule 1 (Cadm1) regulates the growth and differentiation of airway basal cells, previously identified as lung stem cells. Immunohistochemistry and gene expression analysis reveals that Cadm1 is broadly expressed throughout the murine tracheobronchial epithelium, exhibits transient downregulation concomitant with airway injury, and is subsequently restored during basal cell differentiation. Using Cadm1 null (KO) and keratin 14 (K14)-specific Cadm1 overexpressing transgenic mice, we demonstrate that maintaining Cadm1 expression reduces basal stem cell proliferation after tracheal polidocanol injury, whereas Cadm1 deletion causes increased ciliated cell differentiation and sustained downstream Stat3 signalling. Altogether, this study defines a previously uncharacterised role for Cadm1 in directing airway basal cell homeostasis and repair via modulation of Stat3 activity.

2019 ◽  
Author(s):  
Xue Wang ◽  
Haibo Xu ◽  
Chaping Cheng ◽  
Zhongzhong Ji ◽  
Huifang Zhao ◽  
...  

AbstractThe basal cell compartment in many epithelial tissues such as the prostate, bladder, and mammary gland are generally believed to serve as an important pool of stem cells. However, basal cells are heterogenous and the stem cell subpopulation within basal cells is not well elucidated. Here we uncover that the core epithelial-to-mesenchymal transition (EMT) inducer Zeb is exclusively expressed in a prostate basal cell subpopulation based on both immunocytochemical and cell lineage tracing analysis. The Zeb1+prostate epithelial cells are multipotent prostate basal stem cells (PBSCs) that can self-renew and generate functional prostatic glandular structures with all three epithelial cell types at the single-cell level. Genetic ablation studies reveal an indispensable role for Zeb1 in prostate basal cell development. Utilizing unbiased single cell transcriptomic analysis of over 9000 mouse prostate basal cells, we find that Zeb1+basal cell subset shares gene expression signatures with both epithelial and mesenchymal cells and stands out uniquely among all the basal cell clusters. Moreover, Zeb1+epithelial cells can be detected in mouse and clinical samples of prostate tumors. Identification of the PBSC and its transcriptome profile is crucial to advance our understanding of prostate development and tumorigenesis.


2021 ◽  
Vol 22 (8) ◽  
pp. 4011
Author(s):  
Brianna Chen ◽  
Dylan McCuaig-Walton ◽  
Sean Tan ◽  
Andrew P. Montgomery ◽  
Bryan W. Day ◽  
...  

Glioblastoma display vast cellular heterogeneity, with glioblastoma stem cells (GSCs) at the apex. The critical role of GSCs in tumour growth and resistance to therapy highlights the need to delineate mechanisms that control stemness and differentiation potential of GSC. Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) regulates neural progenitor cell differentiation, but its role in cancer stem cell differentiation is largely unknown. Herein, we demonstrate that DYRK1A kinase is crucial for the differentiation commitment of glioblastoma stem cells. DYRK1A inhibition insulates the self-renewing population of GSCs from potent differentiation-inducing signals. Mechanistically, we show that DYRK1A promotes differentiation and limits stemness acquisition via deactivation of CDK5, an unconventional kinase recently described as an oncogene. DYRK1A-dependent inactivation of CDK5 results in decreased expression of the stemness gene SOX2 and promotes the commitment of GSC to differentiate. Our investigations of the novel DYRK1A-CDK5-SOX2 pathway provide further insights into the mechanisms underlying glioblastoma stem cell maintenance.


2015 ◽  
Vol 35 (10) ◽  
pp. 1700-1711 ◽  
Author(s):  
Fenfang Chen ◽  
Xia Lin ◽  
Pinglong Xu ◽  
Zhengmao Zhang ◽  
Yanzhen Chen ◽  
...  

Bone morphogenetic proteins (BMPs) play vital roles in regulating stem cell maintenance and differentiation. BMPs can induce osteogenesis and inhibit myogenesis of mesenchymal stem cells. Canonical BMP signaling is stringently controlled through reversible phosphorylation and nucleocytoplasmic shuttling of Smad1, Smad5, and Smad8 (Smad1/5/8). However, how the nuclear export of Smad1/5/8 is regulated remains unclear. Here we report that the Ran-binding protein RanBP3L acts as a nuclear export factor for Smad1/5/8. RanBP3L directly recognizes dephosphorylated Smad1/5/8 and mediates their nuclear export in a Ran-dependent manner. Increased expression of RanBP3L blocks BMP-induced osteogenesis of mouse bone marrow-derived mesenchymal stem cells and promotes myogenic induction of C2C12 mouse myoblasts, whereas depletion of RanBP3L expression enhances BMP-dependent stem cell differentiation activity and transcriptional responses. In conclusion, our results demonstrate that RanBP3L, as a nuclear exporter for BMP-specific Smads, plays a critical role in terminating BMP signaling and regulating mesenchymal stem cell differentiation.


2015 ◽  
Vol 3 (16) ◽  
pp. 3150-3168 ◽  
Author(s):  
Sunil Kumar Boda ◽  
Greeshma Thrivikraman ◽  
Bikramjit Basu

Substrate magnetization as a tool for modulating the osteogenesis of human mesenchymal stem cells for bone tissue engineering applications.


2012 ◽  
Vol 287 (44) ◽  
pp. 36777-36791 ◽  
Author(s):  
Hiroaki Fujimori ◽  
Mima Shikanai ◽  
Hirobumi Teraoka ◽  
Mitsuko Masutani ◽  
Ken-ichi Yoshioka

2020 ◽  
Author(s):  
Hirofumi Kiyokawa ◽  
Akira Yamaoka ◽  
Chisa Matsuoka ◽  
Tomoko Tokuhara ◽  
Takaya Abe ◽  
...  

SummaryDuring development, quiescent basal stem cells are derived from proliferative primordial progenitors through the cell cycle slowdown. In contrast, quiescent basal cells contribute to tissue repair during adult tissue regeneration by shifting from slow-cycling to proliferating and subsequently back to slow-cycling. Although sustained basal cell proliferation results in tumorigenesis, the molecular mechanisms regulating these transitions remain unknown. Using temporal single-cell transcriptomics of developing murine airway progenitors and in vivo genetic validation experiments, we found that Tgfß signaling slowed down cell cycle by inhibiting Id2 expression in airway progenitors and contributed to the specification of slow-cycling basal cell population during development. In adult tissue regeneration, reduced Tgfß signaling restored Id2 expression and initiated epithelial regeneration. Id2 overexpression and Tgfbr2 knockout enhanced epithelial proliferation; however, persistent Id2 expression in basal cells drove hyperplasia at a rate that resembled a precancerous state. Together, the Tgfß-Id2 axis commonly regulates the proliferation transitions in airway basal cells during development and regeneration, and its fine-tuning is critical for normal regeneration while avoiding basal cell hyperplasia.


2020 ◽  
Author(s):  
Sandrina Martens ◽  
Mathias Van Bulck ◽  
Katarina Coolens ◽  
Hediel Madhloum ◽  
Farzad Esni ◽  
...  

SUMMARYObjectiveAn aggressive basal-like molecular subtype of pancreatic ductal adenocarcinoma (PDAC) exists, driven by ΔNp63. In other epithelia, ΔNp63+ basal cells have stem cell capacity and can be at the origin of tumors. In the pancreas, basal cells have not been identified.DesignWe assessed basal cell markers in human and mouse pancreas, chronic pancreatitis and PDAC, and developed a 3D imaging protocol (FLIP-IT) to study sizeable samples at single cell resolution. We generated organoid cultures of ducts from Sox9-eGFP reporter mice.ResultsIn normal human pancreas, rare ΔNp63+ cells exist in ducts that expand in chronic pancreatitis. ΔNp63+ cells express KRT19 and canonical basal markers (KRT5, KRT14 and S100A2) but lack markers of duct cells such as CA19.9 and SOX9. In addition, ΔNp63+ cells pertain to a niche of cells expressing gastrointestinal stem cell markers. 3D views of the ductal tree in formalin fixed paraffin embedded samples show that basal cells are localized on the basal membrane of medium to large ducts and expand as multilayer dome-like structures in chronic pancreatitis. In mice, ΔNp63 expression is induced when culturing organoids from Sox9-low ductal cells but could not be found in normal pancreas nor in models of pancreatitis or pancreatic cancer.ConclusionWe discovered a novel ductal cell population in normal human pancreas similar to basal cells in other tissues. Using FLIP-IT, we provide unprecedented 3D visualization of these cells in archival clinical specimens. ΔNp63+ cells may play an important role in pancreatic tissue regeneration and cancer.SUMMARY BOXWhat is already known about this subject?ΔNp63 has a central role in determining the basal-like subtype of pancreatic ductal adenocarcinoma (PDAC).Different to other tissues with basal cancers, the normal pancreas reportedly does not contain (ΔNp63-expressing) basal cells.Current protocols face severe limitations for marker-based identification and 3D imaging of individual (rare) cells in archival pancreatic samples.What are the new findings?We report a rare and atypical pancreatic duct cell that expresses ΔNp63, other basal cell markers and g.i. stem cell markers.The number of these basal cells increases in diseases such as chronic pancreatitis and pancreatic cancer.We provide an easy to implement protocol for 3D clearing and high-resolution imaging of sizeable samples of (fresh or FFPE) human pancreas or an entire mouse pancreas.Except after culturing medium to large ducts as organoids, we fail to detect basal cells in mouse experimental pancreatic models.How might it impact on clinical practice in the foreseeable future?Extrapolating from knowledge in other organs, basal cells in the pancreas may have a stem cell/progenitor role, including in diseases such as (basal) pancreatic cancer.Use of the 3D imaging protocol in archival clinical specimens will allow unprecedented insights in pancreatic histopathology.For above mentioned diseases, we caution for findings in experimental mouse models that may not (fully) recapitulate the etiopathogenesis.


Physiology ◽  
2018 ◽  
Vol 33 (1) ◽  
pp. 16-25 ◽  
Author(s):  
Lucas R. Smith ◽  
Sangkyun Cho ◽  
Dennis E. Discher

Stem cells mechanosense the stiffness of their microenvironment, which impacts differentiation. Although tissue hydration anti-correlates with stiffness, extracellular matrix (ECM) stiffness is clearly transduced into gene expression via adhesion and cytoskeleton proteins that tune fates. Cytoskeletal reorganization of ECM can create heterogeneity and influence fates, with fibrosis being one extreme.


Sign in / Sign up

Export Citation Format

Share Document