scholarly journals An attempt to replicate a dissociation between syntax and semantics during sentence comprehension reported by Dapretto & Bookheimer (1999, Neuron)

2017 ◽  
Author(s):  
Matthew Siegelman ◽  
Zachary Mineroff ◽  
Idan Blank ◽  
Evelina Fedorenko

AbstractDoes processing the meanings of individual words vs. assembling words into phrases and sentences rely on distinct pools of cognitive and neural resources? Many have argued for such a dissociation, although the field is lacking a consensus on which brain region(s) support lexico-semantic vs. syntactic processing. Although some have also argued against such a dissociation, the dominant view in the field remains that distinct brain regions support these two fundamental components of language. One of the earlier and most cited pieces of evidence in favor of this dissociation comes from a paper by Dapretto & Bookheimer (1999, Neuron; DB). Using a sentence meaning comparison task, DB observed two distinct peaks within the left inferior frontal gyrus (LIFG): one more active when comparisons relied on lexico-semantic cues, and another – when they instead relied on syntactic cues. Although the paper has been highly cited over the years, no attempt has been made, to our knowledge, to replicate the original finding. We here report an fMRI study that attempts to do so. Using a combination of three approaches – whole-brain, group-level ROIs, and individual functional ROIs – we fail to replicate the originally reported dissociation. In particular, parts of the LIFG respond reliably more strongly during lexico-semantic than syntactic processing, but no part of the LIFG (including in the region defined around the peak reported by DB) shows the opposite response pattern. We hypothesize that the original result was a false positive, possibly driven by one participant or item given the use of a fixed-effects analysis and a small number of items (8 per condition) and participants (n=8).

2020 ◽  
Vol 1 (1) ◽  
Author(s):  
William Matchin ◽  
Emily Wood

Abstract Matchin and Hickok (2020) proposed that the left posterior inferior frontal gyrus (PIFG) and the left posterior temporal lobe (PTL) both play a role in syntactic processing, broadly construed, attributing distinct functions to these regions with respect to production and perception. Consistent with this hypothesis, functional dissociations between these regions have been demonstrated with respect to lesion–symptom mapping in aphasia. However, neuroimaging studies of syntactic comprehension typically show similar activations in these regions. In order to identify whether these regions show distinct activation patterns with respect to syntactic perception and production, we performed an fMRI study contrasting the subvocal articulation and perception of structured jabberwocky phrases (syntactic), sequences of real words (lexical), and sequences of pseudowords (phonological). We defined two sets of language-selective regions of interest (ROIs) in individual subjects for the PIFG and the PTL using the contrasts [syntactic > lexical] and [syntactic > phonological]. We found robust significant interactions of comprehension and production between these 2 regions at the syntactic level, for both sets of language-selective ROIs. This suggests a core difference in the function of these regions with respect to production and perception, consistent with the lesion literature.


1988 ◽  
Vol 31 (1) ◽  
pp. 72-81 ◽  
Author(s):  
Beverly B. Wulfeck

The relationship between sentence comprehension and grammaticality judgment was examined for both neurologically intact and agrammatic aphasic subjects. Aphasic subjects were able to make grammaticality judgments and comprehension judgments, but were less accurate than healthy control subjects. However, the tasks appeared dissociated for the aphasic subjects: Both the effects of semantic cues and the hierarchy of difficulty of sentence types differed across the two tasks. Further, the findings suggest that not all aspects of morpho-syntactic processing may be equally disrupted in aphasia. The results argue against both a central deficit view of agrammatic aphasia, and a view suggesting that syntactic processing is intact whereas semantic or thematic mapping is not. Instead, the results indicate that the respective performance domains of comprehension and grammaticality judgment may draw on different processes and/or operate on different aspects of the language input.


2021 ◽  
Author(s):  
Sophie M Hardy ◽  
Ole Jensen ◽  
Linda Wheeldon ◽  
Ali Mazaheri ◽  
Katrien Segaert

Successful sentence comprehension requires the binding, or composition, of multiple words into larger structures to establish meaning. Using magnetoencephalography (MEG), we investigated the neural mechanisms involved in binding of language at the level of syntax, in a task in which contributions from semantics were minimized. Participants were auditorily presented with minimal sentences that required binding (pronoun and pseudo-verb with the corresponding morphological inflection; "she grushes") and wordlists that did not require binding (two pseudo-verbs; "cugged grushes"). Relative to the no binding wordlist condition, we found that syntactic binding in a minimal sentence structure was associated with a modulation in alpha band (8-12 Hz) activity in left-lateralized brain regions. First, in the sentence condition, we observed a significantly smaller increase in alpha power around the presentation of the target word ("grushes") that required binding (-0.05s to 0.1s), which we suggest reflects an expectation of binding to occur. Second, following the presentation of the target word (around 0.15s to 0.25s), during syntactic binding we observed significantly decreased alpha phase-locking between the left inferior frontal gyrus and the left middle/inferior temporal cortex. We suggest that this results from alpha-driven cortical disinhibition serving to increase information transfer between these two brain regions and strengthen the syntax composition neural network. Together, our findings highlight that successful syntax composition is underscored by the rapid spatial-temporal activation and coordination of language-relevant brain regions, and that alpha band oscillations are critically important in controlling the allocation and transfer of the brain's resources during syntax composition.


2009 ◽  
Vol 21 (11) ◽  
pp. 2085-2099 ◽  
Author(s):  
Cathelijne M. J. Y. Tesink ◽  
Karl Magnus Petersson ◽  
Jos J. A. van Berkum ◽  
Daniëlle van den Brink ◽  
Jan K. Buitelaar ◽  
...  

When interpreting a message, a listener takes into account several sources of linguistic and extralinguistic information. Here we focused on one particular form of extralinguistic information, certain speaker characteristics as conveyed by the voice. Using functional magnetic resonance imaging, we examined the neural structures involved in the unification of sentence meaning and voice-based inferences about the speaker's age, sex, or social background. We found enhanced activation in the inferior frontal gyrus bilaterally (BA 45/47) during listening to sentences whose meaning was incongruent with inferred speaker characteristics. Furthermore, our results showed an overlap in brain regions involved in unification of speaker-related information and those used for the unification of semantic and world knowledge information [inferior frontal gyrus bilaterally (BA 45/47) and left middle temporal gyrus (BA 21)]. These findings provide evidence for a shared neural unification system for linguistic and extralinguistic sources of information and extend the existing knowledge about the role of inferior frontal cortex as a crucial component for unification during language comprehension.


2021 ◽  
Vol 11 (8) ◽  
pp. 983
Author(s):  
Xin Wang ◽  
Shiwen Feng ◽  
Tongquan Zhou ◽  
Renyu Wang ◽  
Guowei Wu ◽  
...  

According to the Unaccusative Hypothesis, intransitive verbs are divided into unaccusative and unergative ones based on the distinction of their syntactic properties, which has been proved by previous theoretical and empirical evidence. However, debate has been raised regarding whether intransitive verbs in Mandarin Chinese can be split into unaccusative and unergative ones syntactically. To analyze this theoretical controversy, the present study employed functional magnetic resonance imaging to compare the neural processing of deep unaccusative, unergative sentences, and passive sentences (derived structures undergoing a syntactic movement) in Mandarin Chinese. The results revealed no significant difference in the neural processing of deep unaccusative and unergative sentences, and the comparisons between passive sentences and the other sentence types revealed activation in the left superior temporal gyrus (LSTG) and the left middle frontal gyrus (LMFG). These findings indicate that the syntactic processing of unaccusative and unergative verbs in Mandarin Chinese is highly similar but different from that of passive verbs, which suggests that deep unaccusative and unergative sentences in Mandarin Chinese are both base-generated structures and that there is no syntactic distinction between unaccusative and unergative verbs in Mandarin Chinese.


2015 ◽  
Vol 27 (8) ◽  
pp. 1528-1541 ◽  
Author(s):  
Vicky Tzuyin Lai ◽  
Roel M. Willems ◽  
Peter Hagoort

This study investigated the brain regions for the comprehension of implied emotion in sentences. Participants read negative sentences without negative words, for example, “The boy fell asleep and never woke up again,” and their neutral counterparts “The boy stood up and grabbed his bag.” This kind of negative sentence allows us to examine implied emotion derived at the sentence level, without associative emotion coming from word retrieval. We found that implied emotion in sentences, relative to neutral sentences, led to activation in some emotion-related areas, including the medial prefrontal cortex, the amygdala, and the insula, as well as certain language-related areas, including the inferior frontal gyrus, which has been implicated in combinatorial processing. These results suggest that the emotional network involved in implied emotion is intricately related to the network for combinatorial processing in language, supporting the view that sentence meaning is more than simply concatenating the meanings of its lexical building blocks.


2011 ◽  
Vol 23 (11) ◽  
pp. 3254-3266 ◽  
Author(s):  
E. Matthew Husband ◽  
Lisa A. Kelly ◽  
David C. Zhu

Previous research regarding the neural basis of semantic composition has relied heavily on violation paradigms, which often compare implausible sentences that violate world knowledge to plausible sentences that do not violate world knowledge. This comparison is problematic as it may involve extralinguistic operations such as contextual repair and processes that ultimately lead to the rejection of an anomalous sentence, and these processes may not be part of the core language system. Also, it is unclear if violations of world knowledge actually affect the linguistic operations for semantic composition. Here, we compared two types of sentences that were grammatical, plausible, and acceptable and differed only in the number of semantic operations required for comprehension without the confound of implausible sentences. Specifically, we compared complement coercion sentences (the novelist began the book), which require an extra compositional operation to arrive at their meaning, to control sentences (the novelist wrote the book), which do not have this extra compositional operation, and found that the neural response to complement coercion sentences activated Brodmann's area 45 in the left inferior frontal gyrus more than control sentences. Furthermore, the processing of complement coercion recruited different brain regions than more traditional semantic and syntactic violations (the novelist astonished/write the book, respectively), suggesting that coercion processes are a part of the core of the language faculty but do not recruit the wider network of brain regions underlying semantic and syntactic violations.


Author(s):  
Margreet Vogelzang ◽  
Christiane M. Thiel ◽  
Stephanie Rosemann ◽  
Jochem W. Rieger ◽  
Esther Ruigendijk

Purpose Adults with mild-to-moderate age-related hearing loss typically exhibit issues with speech understanding, but their processing of syntactically complex sentences is not well understood. We test the hypothesis that listeners with hearing loss' difficulties with comprehension and processing of syntactically complex sentences are due to the processing of degraded input interfering with the successful processing of complex sentences. Method We performed a neuroimaging study with a sentence comprehension task, varying sentence complexity (through subject–object order and verb–arguments order) and cognitive demands (presence or absence of a secondary task) within subjects. Groups of older subjects with hearing loss ( n = 20) and age-matched normal-hearing controls ( n = 20) were tested. Results The comprehension data show effects of syntactic complexity and hearing ability, with normal-hearing controls outperforming listeners with hearing loss, seemingly more so on syntactically complex sentences. The secondary task did not influence off-line comprehension. The imaging data show effects of group, sentence complexity, and task, with listeners with hearing loss showing decreased activation in typical speech processing areas, such as the inferior frontal gyrus and superior temporal gyrus. No interactions between group, sentence complexity, and task were found in the neuroimaging data. Conclusions The results suggest that listeners with hearing loss process speech differently from their normal-hearing peers, possibly due to the increased demands of processing degraded auditory input. Increased cognitive demands by means of a secondary visual shape processing task influence neural sentence processing, but no evidence was found that it does so in a different way for listeners with hearing loss and normal-hearing listeners.


Sign in / Sign up

Export Citation Format

Share Document