scholarly journals Neural computations underpinning the strategic management of influence in advice giving

2017 ◽  
Author(s):  
Uri Hertz ◽  
Stefano Palminteri ◽  
Silvia Brunetti ◽  
Cecilie Olesen ◽  
Chris D Frith ◽  
...  

AbstractResearch on social influence has mainly focused on the target of influence (e.g., consumer, voter), while the cognitive and neurobiological underpinnings of the source of the influence (e.g., spin doctor, financial adviser) remain unexplored. Here, we introduce a 3-sided Advising Game consisting of a client and two advisers. Advisers managed their influence over the client strategically by modulating the confidence of their advice depending on their level of influence (i.e. which adviser had the client’s attention) and their relative merit (i.e. which adviser was more accurate). Functional magnetic resonance imaging showed that these sources of social information were computed in distinct cortical regions: relative merit prediction error was tracked in the medial-prefrontal cortex and selection by client in the right temporo-parietal junction. Trial-by-trial changes in both sources of social information modulated the activity in the ventral striatum. These results open a fresh avenue for exploration of human interactions and provide new insights on the neurobiology involved when we try to influence others.

Cephalalgia ◽  
2003 ◽  
Vol 23 (9) ◽  
pp. 860-868 ◽  
Author(s):  
M Vincent ◽  
E Pedra ◽  
J Mourão-Miranda ◽  
IE Bramati ◽  
AR Henrique ◽  
...  

Since visual aura is usually described as expanding zigzag lines, neurones involved with the perception of line orientation may initiate this phenomenon. A visual incongruent line stimulation protocol was developed to obtain functional magnetic resonance images (fMRI) interictally in 5 female migraine patients with typical fortification spectra and in 5 normal matched controls. Activation in the visual cortex was present contralateral to the side of stimulation in 4 of 5 patients, notably in the extrastriate visual cortex. In 4 of 5 controls activation was observed in the medial and anterior orbitofrontal cortex. In one of them additional activation at the right nucleus accumbens/ventral striatum and right ventral pallidum was present. In the remaining control subject activation was present in the left primary visual cortex. The enhanced interictal reactivity of the visual cortex in migraineurs supports the hypothesis of abnormal cortical excitability as an important pathophysiological mechanism in migraine aura, though the role of specific regions of the visual cortex remains to be explored.


2021 ◽  
Vol 11 (8) ◽  
pp. 960
Author(s):  
Mina Kheirkhah ◽  
Philipp Baumbach ◽  
Lutz Leistritz ◽  
Otto W. Witte ◽  
Martin Walter ◽  
...  

Studies investigating human brain response to emotional stimuli—particularly high-arousing versus neutral stimuli—have obtained inconsistent results. The present study was the first to combine magnetoencephalography (MEG) with the bootstrapping method to examine the whole brain and identify the cortical regions involved in this differential response. Seventeen healthy participants (11 females, aged 19 to 33 years; mean age, 26.9 years) were presented with high-arousing emotional (pleasant and unpleasant) and neutral pictures, and their brain responses were measured using MEG. When random resampling bootstrapping was performed for each participant, the greatest differences between high-arousing emotional and neutral stimuli during M300 (270–320 ms) were found to occur in the right temporo-parietal region. This finding was observed in response to both pleasant and unpleasant stimuli. The results, which may be more robust than previous studies because of bootstrapping and examination of the whole brain, reinforce the essential role of the right hemisphere in emotion processing.


BJPsych Open ◽  
2018 ◽  
Vol 4 (5) ◽  
pp. 317-323 ◽  
Author(s):  
Asako Mori ◽  
Yasumasa Okamoto ◽  
Go Okada ◽  
Koki Takagaki ◽  
Masahiro Takamura ◽  
...  

BackgroundBehavioural activation is an efficient treatment for depression and can improve intrinsic motivation. Previous studies have revealed that the frontostriatal circuit is involved in intrinsic motivation; however, there are no data on how behavioural activation affects the frontostriatal circuit.AimsWe aimed to investigate behavioural activation-related changes in the frontostriatal circuit.MethodFifty-nine individuals with subthreshold depression were randomly assigned to either the intervention or non-intervention group. The intervention group received five weekly behavioural activation sessions. The participants underwent functional magnetic resonance imaging scanning on two separate occasions while performing a stopwatch task based on intrinsic motivation. We investigated changes in neural activity and functional connectivity after behavioural activation.ResultsAfter behavioural activation, the intervention group had increased activation and connectivity in the frontostriatal region compared with the non-intervention group. The increased activation in the right middle frontal gyrus was correlated with an improvement of subjective sensitivity to environmental rewards.ConclusionsBehavioural activation-related changes to the frontostriatal circuit advance our understanding of psychotherapy-induced improvements in the neural basis of intrinsic motivation.Declaration of interestNone.


2015 ◽  
Vol 114 (5) ◽  
pp. 2588-2599 ◽  
Author(s):  
Gijs Joost Brouwer ◽  
Vanessa Arnedo ◽  
Shani Offen ◽  
David J. Heeger ◽  
Arthur C. Grant

Functional magnetic resonance imaging (fMRI) was used to measure activity in human somatosensory cortex and to test for cross-digit suppression. Subjects received stimulation (vibration of varying amplitudes) to the right thumb (target) with or without concurrent stimulation of the right middle finger (mask). Subjects were less sensitive to target stimulation (psychophysical detection thresholds were higher) when target and mask digits were stimulated concurrently compared with when the target was stimulated in isolation. fMRI voxels in a region of the left postcentral gyrus each responded when either digit was stimulated. A regression model (called a forward model) was used to separate the fMRI measurements from these voxels into two hypothetical channels, each of which responded selectively to only one of the two digits. For the channel tuned to the target digit, responses in the left postcentral gyrus increased with target stimulus amplitude but were suppressed by concurrent stimulation to the mask digit, evident as a shift in the gain of the response functions. For the channel tuned to the mask digit, a constant baseline response was evoked for all target amplitudes when the mask was absent and responses decreased with increasing target amplitude when the mask was concurrently presented. A computational model based on divisive normalization provided a good fit to the measurements for both mask-absent and target + mask stimulation. We conclude that the normalization model can explain cross-digit suppression in human somatosensory cortex, supporting the hypothesis that normalization is a canonical neural computation.


2010 ◽  
Vol 23 (1) ◽  
pp. 149-154 ◽  
Author(s):  
Shou-Hung Huang ◽  
Shang-Ying Tsai ◽  
Jung-Lung Hsu ◽  
Yi-Lin Huang

ABSTRACTBackground: Few studies have examined alterations of the brain in elderly bipolar patients. As late-onset mania is associated with increased cerebrovascular morbidity and neurological damage compared with typical/early-onset mania, we investigated differences in the volume of various cortical regions between elderly patients with early-onset versus late-onset mania.Methods: We recruited 44 bipolar patients aged over 60 years, who underwent volumetric magnetic resonance imaging at 1.5 T. The analytic method is based on the hidden Markov random field model with an expectation-maximization algorithm. We determined the volume of each cortical region as a percentage of the total intracranial volume. The cutoff age for defining early versus late onset was 45 years.Results: The study participants consisted of 25 patients with early-onset mania and 19 patients with late-onset mania; their mean ages were 65.7 years and 62.8 years, respectively. The demographic variables of the two groups were comparable. The volumes of the left caudate nucleus (p = 0.022) and left middle frontal gyrus (p = 0.013) were significantly greater and that of the right posterior cingulate gyrus (p = 0.019) was significantly smaller in the late-onset group. More patients with late-onset mania had comorbid cerebrovascular disease (p = 0.072).Conclusions: The right posterior cingulate gyrus is smaller and the left caudate nucleus and left middle frontal gyrus are larger in patients with late-onset mania compared with those with early-onset mania. Volumetric change in brain regions may vary in elderly bipolar patients with early and late-onset mania.


2004 ◽  
Vol 101 (2) ◽  
pp. 310-313 ◽  
Author(s):  
Tsutomu Nakada ◽  
Yukihiko Fujii ◽  
Ingrid L. Kwee

Object. The authors investigated brain strategies associated with hand use in an attempt to clarify genetic and nongenetic factors influencing handedness by using high-field functional magnetic resonance imaging. Methods. Three groups of patients were studied. The first two groups comprised individuals in whom handedness developed spontaneously (right-handed and left-handed groups). The third group comprised individuals who were coercively trained to use the right hand and developed mixed handedness, referred to here as trained ambidexterity. All trained ambidextrous volunteers were certain that they were innately left-handed, but due to social pressure had modified their preferred hand use for certain tasks common to the right hand. Although right-handed and left-handed volunteers displayed virtually identical cortical activation, involving homologous cortex primarily located contralateral to the hand motion, trained ambidextrous volunteers exhibited a clearly unique activation pattern. During right-handed motion, motor areas in both hemispheres were activated in these volunteers. During left-handed motion, the right supplemental motor area and the right intermediate zone of the anterior cerebellar lobe were activated significantly more frequently than observed in naturally right-handed or left-handed volunteers. Conclusions. The results provide strong evidence that cortical organization of spontaneously developed right- and left-handedness involves homologous cortex primarily located contralateral to the hand motion, and this organization is likely to be prenatally determined. By contrast, coerced training of the nondominant hand during the early stages of an individual's development results in mixed handedness (trained ambidexterity), indicating cortical reorganization.


2018 ◽  
Vol 45 (5) ◽  
pp. 1051-1059 ◽  
Author(s):  
Dinesh K Shukla ◽  
Joshua John Chiappelli ◽  
Hemalatha Sampath ◽  
Peter Kochunov ◽  
Stephanie M Hare ◽  
...  

AbstractNegative symptoms represent a distinct component of psychopathology in schizophrenia (SCZ) and are a stable construct over time. Although impaired frontostriatal connectivity has been frequently described in SCZ, its link with negative symptoms has not been carefully studied. We tested the hypothesis that frontostriatal connectivity at rest may be associated with the severity of negative symptoms in SCZ. Resting state functional connectivity (rsFC) data from 95 mostly medicated patients with SCZ and 139 healthy controls (HCs) were acquired. Negative symptoms were assessed using the Brief Negative Symptom Scale. The study analyzed voxel-wise rsFC between 9 frontal “seed regions” and the entire striatum, with the intention to reduce potential biases introduced by predefining any single frontal or striatal region. SCZ showed significantly reduced rsFC between the striatum and the right medial and lateral orbitofrontal cortex (OFC), lateral prefrontal cortex, and rostral anterior cingulate cortex compared with HCs. Further, rsFC between the striatum and the right medial OFC was significantly associated with negative symptom severity. The involved striatal regions were primarily at the ventral putamen. Our results support reduced frontostriatal functional connectivity in SCZ and implicate striatal connectivity with the right medial OFC in negative symptoms. This task-independent resting functional magnetic resonance imaging study showed that medial OFC–striatum functional connectivity is reduced in SCZ and associated with severity of negative symptoms. This finding supports a significant association between frontostriatal connectivity and negative symptoms and thus may provide a potential circuitry-level biomarker to study the neurobiological mechanisms of negative symptoms.


2018 ◽  
Author(s):  
Christiane Oedekoven ◽  
James L. Keidel ◽  
Stuart Anderson ◽  
Angus Nisbet ◽  
Chris Bird

Despite their severely impaired episodic memory, individuals with amnesia are able to comprehend ongoing events. Online representations of a current event are thought to be supported by a network of regions centred on the posterior midline cortex (PMC). By contrast, episodic memory is widely believed to be supported by interactions between the hippocampus and these cortical regions. In this MRI study, we investigated the encoding and retrieval of lifelike events (video clips) in a patient with severe amnesia likely resulting from a stroke to the right thalamus, and a group of 20 age-matched controls. Structural MRI revealed grey matter reductions in left hippocampus and left thalamus in comparison to controls. We first characterised the regions activated in the controls while they watched and retrieved the videos. There were no differences in activation between the patient and controls in any of the regions. We then identified a widespread network of brain regions, including the hippocampus, that were functionally connected with the PMC in controls. However, in the patient there was a specific reduction in functional connectivity between the PMC and a region of left hippocampus when both watching and attempting to retrieve the videos. A follow up analysis revealed that in controls the functional connectivity between these regions when watching the videos was correlated with memory performance. Taken together, these findings support the view that the interactions between the PMC and the hippocampus enable the encoding and retrieval of multimodal representations of the contents of an event.


2020 ◽  
Author(s):  
Jayne Morriss ◽  
Tiffany Bell ◽  
Nicolò Biagi ◽  
Tom Johnstone ◽  
Carien M. van Reekum

AbstractHeightened responding to uncertain threat is associated with anxiety disorder pathology. Here, we sought to determine if individual differences in self-reported intolerance of uncertainty (IU) underlie differential recruitment of neural circuitry during instructed threat of shock (n = 42). During the task, cues signalled uncertain threat of shock (50%) or certain safety from shock. Ratings, skin conductance and functional magnetic resonance imaging was acquired. Overall, participants displayed greater amygdala activation to uncertain threat vs. safe cues, in the absence of an effect of IU. However, we found that high was associated with greater activity in the medial prefrontal cortex and dorsomedial rostral prefrontal cortex to uncertain threat vs safe cues. These findings suggest that, during instructed threat of shock, IU is specifically related, over trait anxiety, to activation in prefrontal cortical regions. Taken together, these findings highlight the potential of self-reported IU in identifying mechanisms that may be related to conscious threat appraisal and anxiety disorder pathology.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xi Guo ◽  
Su Wang ◽  
Yu-Chen Chen ◽  
Heng-Le Wei ◽  
Gang-Ping Zhou ◽  
...  

Alterations of brain functional connectivity in patients with type 2 diabetes mellitus (T2DM) have been reported by resting-state functional magnetic resonance imaging studies, but the underlying precise neuropathological mechanism remains unclear. This study is aimed at investigating the implicit alterations of functional connections in T2DM by integrating functional connectivity strength (FCS) and Granger causality analysis (GCA) and further exploring their associations with clinical characteristics. Sixty T2DM patients and thirty-three sex-, age-, and education-matched healthy controls (HC) were recruited. Global FCS analysis of resting-state functional magnetic resonance imaging was performed to explore seed regions with significant differences between the two groups; then, GCA was applied to detect directional effective connectivity (EC) between the seeds and other brain regions. Correlations of EC with clinical variables were further explored in T2DM patients. Compared with HC, T2DM patients showed lower FCS in the bilateral fusiform gyrus, right superior frontal gyrus (SFG), and right postcentral gyrus, but higher FCS in the right supplementary motor area (SMA). Moreover, altered directional EC was found between the left fusiform gyrus and bilateral lingual gyrus and right medial frontal gyrus (MFG), as well as between the right SFG and bilateral frontal regions. In addition, triglyceride, insulin, and plasma glucose levels were correlated with the abnormal EC of the left fusiform, while disease duration and cognitive function were associated with the abnormal EC of the right SFG in T2DM patients. These results suggest that T2DM patients show aberrant brain function connectivity strength and effective connectivity which is associated with the diabetes-related metabolic characteristics, disease duration, and cognitive function, providing further insights into the complex neural basis of diabetes.


Sign in / Sign up

Export Citation Format

Share Document