scholarly journals Evaluating strategies for reversing CRISPR-Cas9 gene drives

2017 ◽  
Author(s):  
Michael R. Vella ◽  
Christian E. Gunning ◽  
Alun L. Lloyd ◽  
Fred Gould

AbstractA gene drive biases inheritance of a gene so that it increases in frequency within a population even when the gene confers no fitness benefit. There has been renewed interest in environmental releases of engineered gene drives due to recent proof of principle experiments with the CRISPR-Cas9 system as a drive mechanism. Release of modified organisms, however, is controversial, especially when the drive mechanism could theoretically alter all individuals of a species. Thus, it is desirable to have countermeasures to reverse a drive if a problem arises. Several genetic mechanisms for limiting or eliminating gene drives have been proposed and/or developed, including synthetic resistance, reversal drives, and immunizing reversal drives. While predictions about efficacy of these mechanisms have been optimistic, we lack detailed analyses of their expected dynamics. We develop a discrete time model for population genetics of a drive and proposed genetic countermeasures. Efficacy of drive reversal varies between countermeasures. For some parameter values, the model predicts unexpected behavior including polymorphic equilibria and oscillatory dynamics. The timing and number of released individuals containing a genetic countermeasure can substantially impact outcomes. The choice among countermeasures by researchers and regulators will depend on specific goals and population parameters of target populations.


2019 ◽  
Author(s):  
Gili Greenbaum ◽  
Marcus W. Feldman ◽  
Noah A. Rosenberg ◽  
Jaehee Kim

AbstractThe prospect of utilizing CRISPR-based gene-drive technology for controlling populations, such as invasive and disease-vector species, has generated much excitement. However, the potential for spillovers of gene drive alleles from the target population to non-target populations — events that may be ecologically catastrophic — has raised concerns. Here, using two-population mathematical models, we investigate the possibility of limiting spillovers and impact on non-target populations by designing differential-targeting gene drives, in which the expected equilibrium gene drive allele frequencies are high in the target population but low in the non-target population. We find that achieving differential targeting is possible with certain configurations of gene drive parameters. Most of these configurations ensure differential targeting only under relatively low migration rates between target and non-target populations. Under high migration, differential targeting is possible only in a narrow region of the parameter space. When migration is increased, differential-targeting states can sharply transition to states of global fixation or global loss of the gene drive. Because fixation of the gene drive in the non-target population could severely disrupt ecosystems, we outline possible ways to avoid this outcome. Our results emphasize that, although gene drive technology is promising, understanding the potential consequences for populations other than the targets requires detailed analysis of gene-drive spillovers, and that ways to limit the unintended effects of gene drives to non-target populations should be explored prior to the application of gene drives in natural settings.



2020 ◽  
Author(s):  
Frederik J.H. de Haas ◽  
Sarah P. Otto

1AbstractEngineered gene drive techniques for population replacement and/or suppression have potential for tackling complex challenges, including reducing the spread of diseases and invasive species. Unfortunately, the self-propelled behavior of drives can lead to the spread of transgenic elements beyond the target population, which is concerning. Gene drive systems with a low threshold frequency for invasion, such as homing-based gene drive systems, require initially few transgenic individuals to spread and are therefore easy to implement. However their ease of spread presents a double-edged sword; their low threshold makes these drives much more susceptible to spread outside of the target population (spillover). We model a proposed drive system that transitions in time from a low threshold drive system (homing-based gene drive) to a high threshold drive system (underdominance) using daisy chain technology. This combination leads to a spatially restricted drive strategy, while maintaining an attainable release threshold. We develop and analyze a discrete-time model as proof of concept and find that this technique effectively generates stable local population suppression, while preventing the spread of transgenic elements beyond the target population under biologically realistic parameters.



PLoS Genetics ◽  
2021 ◽  
Vol 17 (2) ◽  
pp. e1009278
Author(s):  
Gili Greenbaum ◽  
Marcus W. Feldman ◽  
Noah A. Rosenberg ◽  
Jaehee Kim

The prospect of utilizing CRISPR-based gene-drive technology for controlling populations has generated much excitement. However, the potential for spillovers of gene-drive alleles from the target population to non-target populations has raised concerns. Here, using mathematical models, we investigate the possibility of limiting spillovers to non-target populations by designing differential-targeting gene drives, in which the expected equilibrium gene-drive allele frequencies are high in the target population but low in the non-target population. We find that achieving differential targeting is possible with certain configurations of gene-drive parameters, but, in most cases, only under relatively low migration rates between populations. Under high migration, differential targeting is possible only in a narrow region of the parameter space. Because fixation of the gene drive in the non-target population could severely disrupt ecosystems, we outline possible ways to avoid this outcome. We apply our model to two potential applications of gene drives—field trials for malaria-vector gene drives and control of invasive species on islands. We discuss theoretical predictions of key requirements for differential targeting and their practical implications.



Author(s):  
Nikolay P. Kandul ◽  
Junru Liu ◽  
Jared B. Bennett ◽  
John M. Marshall ◽  
Omar S. Akbari

AbstractHoming based gene drives, engineered using CRISPR/Cas9, have been proposed to spread desirable genes into target populations. However, spread of such drives can be hindered by the accumulation of resistance alleles. To overcome this significant obstacle, we engineer an inherently confinable population modification Home-and-Rescue (HomeR) drive in Drosophila melanogaster that, by creative design, limits the accumulation of such alleles. We demonstrate that HomeR can achieve nearly ∼100% transmission enabling it to spread and persist at genotypic fixation in several multi-generational population cage experiments, underscoring its long term stability and drive potential. Finally, we conduct mathematical modeling determining HomeR can outperform contemporary gene drive architectures for population modification over wide ranges of fitness and transmission rates. Given its straightforward design, HomeR could be universally adapted to a wide range of species.



2021 ◽  
Author(s):  
Matthew Metzloff ◽  
Emily Yang ◽  
Sumit Dhole ◽  
Andrew G. Clark ◽  
Philipp W. Messer ◽  
...  

Homing gene drives hold great promise for the genetic control of natural populations. However, current homing systems are capable of spreading uncontrollably between populations connected by even marginal levels of migration. This could represent a substantial sociopolitical barrier to the testing or deployment of such drives and may generally be undesirable when the objective is only local population control, such as suppression of an invasive species outside of its native range. Tethered drive systems, in which a locally confined gene drive provides the CRISPR nuclease needed for a homing drive, could provide a solution to this problem, offering the power of a homing drive and confinement of the supporting drive. Here, we demonstrate the engineering of a tethered drive system in Drosophila, using a TARE drive to support modification and suppression homing drives. Each drive was able to bias inheritance in its favor, and the TARE drive was shown to spread only when released above a threshold frequency in experimental cage populations. After the TARE drive had established in the population, it facilitated the spread of a subsequently released split homing modification drive (to all individuals in the cage) and of a homing suppression drive (to its equilibrium frequency). Our results show that the tethered drive strategy is a viable and easily engineered option for providing confinement of homing drives to target populations. 



2018 ◽  
Vol 21 (6) ◽  
pp. 411-419 ◽  
Author(s):  
Conghua Wang ◽  
Fang Yan ◽  
Yuan Zhang ◽  
Haihong Liu ◽  
Linghai Zhang

Aims and Objective: A large number of experimental evidences report that the oscillatory dynamics of p53 would regulate the cell fate decisions. Moreover, multiple time delays are ubiquitous in gene expression which have been demonstrated to lead to important consequences on dynamics of genetic networks. Although delay-driven sustained oscillation in p53-based networks is commonplace, the precise roles of such delays during the processes are not completely known. Method: Herein, an integrated model with five basic components and two time delays for the network is developed. Using such time delays as the bifurcation parameter, the existence of Hopf bifurcation is given by analyzing the relevant characteristic equations. Moreover, the effects of such time delays are studied and the expression levels of the main components of the system are compared when taking different parameters and time delays. Result and Conclusion: The above theoretical results indicated that the transcriptional and translational delays can induce oscillation by undergoing a super-critical Hopf bifurcation. More interestingly, the length of these delays can control the amplitude and period of the oscillation. Furthermore, a certain range of model parameter values is essential for oscillation. Finally, we illustrated the main results in detail through numerical simulations.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nicky R. Faber ◽  
Gus R. McFarlane ◽  
R. Chris Gaynor ◽  
Ivan Pocrnic ◽  
C. Bruce A. Whitelaw ◽  
...  

AbstractInvasive species are among the major driving forces behind biodiversity loss. Gene drive technology may offer a humane, efficient and cost-effective method of control. For safe and effective deployment it is vital that a gene drive is both self-limiting and can overcome evolutionary resistance. We present HD-ClvR in this modelling study, a novel combination of CRISPR-based gene drives that eliminates resistance and localises spread. As a case study, we model HD-ClvR in the grey squirrel (Sciurus carolinensis), which is an invasive pest in the UK and responsible for both biodiversity and economic losses. HD-ClvR combats resistance allele formation by combining a homing gene drive with a cleave-and-rescue gene drive. The inclusion of a self-limiting daisyfield gene drive allows for controllable localisation based on animal supplementation. We use both randomly mating and spatial models to simulate this strategy. Our findings show that HD-ClvR could effectively control a targeted grey squirrel population, with little risk to other populations. HD-ClvR offers an efficient, self-limiting and controllable gene drive for managing invasive pests.



2021 ◽  
Author(s):  
Xuejiao Xu ◽  
Tim Harvey-Samuel ◽  
Hamid Anees Siddiqui ◽  
Joshua Ang ◽  
Michelle E Anderson ◽  
...  

Promising to provide powerful genetic control tools, gene drives have been constructed in multiple dipterans, yeast and mice, for the purposes of population elimination or modification. However, it remains unclear whether these techniques can be applied to lepidopterans. Here, we used endogenous regulatory elements to drive Cas9 and sgRNA expression in the diamondback moth, (Plutella xylostella), and test the first split-drive system in a lepidopteran. The diamondback moth is an economically important global agriculture pest of cruciferous crops and has developed severe resistance to various insecticides, making it a prime candidate for such novel control strategy development. A very high level of somatic editing was observed in Cas9/sgRNA transheterozygotes, although no significant homing was revealed in the subsequent generation. Although heritable, Cas9-medated germline cleavage, as well as maternal and paternal Cas9 deposition was observed, rates were far lower than for somatic cleavage events, indicating robust somatic but limited germline activity of Cas9/sgRNA under the control of selected regulatory elements. Our results provide valuable experience, paving the way for future construction of gene drive-based genetic control strategies in DBM or other lepidopterans.



2021 ◽  
pp. 137-152
Author(s):  
Lei Pei ◽  
Markus Schmidt

Abstract Gene drives, particularly synthetic gene drives, may help to address some important challenges, by efficiently altering specific sections of DNA in entire populations of wild organisms. Here we review the current development of the synthetic gene drives, especially those RNA-guided synthetic gene drives based on the CRISPR nuclease Cas. Particular focuses are on their possible applications in agriculture (e.g. disease resistance, weed control management), ecosystem conservation (e.g. evasion species control), health (e.g. to combat insect-borne and fungal infections), and for basic research in model organisms (e.g. Saccharomyces, fruit fly, and zebra fish). The physical, chemical, biological, and ecological containment strategies that might help to confine these gene drive-modified organisms are then explored. The gene flow issues, those from gene drive-derived organisms to the environment, are discussed, while possible mitigation strategies for gene drive research are explored. Last but not least, the regulatory context and opinions from key stakeholders (regulators, scientists, and concerned organizations) are reviewed, aiming to provide a more comprehensive overview of the field.



2020 ◽  
Vol 117 (39) ◽  
pp. 24377-24383 ◽  
Author(s):  
Jackson Champer ◽  
Emily Yang ◽  
Esther Lee ◽  
Jingxian Liu ◽  
Andrew G. Clark ◽  
...  

Engineered gene drives are being explored as a new strategy in the fight against vector-borne diseases due to their potential for rapidly spreading genetic modifications through a population. However, CRISPR-based homing gene drives proposed for this purpose have faced a major obstacle in the formation of resistance alleles that prevent Cas9 cleavage. Here, we present a homing drive in Drosophila melanogaster that reduces the prevalence of resistance alleles below detectable levels by targeting a haplolethal gene with two guide RNAs (gRNAs) while also providing a rescue allele. Resistance alleles that form by end-joining repair typically disrupt the haplolethal target gene and are thus removed from the population because individuals that carry them are nonviable. We demonstrate that our drive is highly efficient, with 91% of the progeny of drive heterozygotes inheriting the drive allele and with no functional resistance alleles observed in the remainder. In a large cage experiment, the drive allele successfully spread to all individuals within a few generations. These results show that a haplolethal homing drive can provide an effective tool for targeted genetic modification of entire populations.



Sign in / Sign up

Export Citation Format

Share Document