scholarly journals TRIM9-dependent ubiquitination of DCC constrains kinase signaling, exocytosis, and axon branching

2017 ◽  
Author(s):  
Melissa Plooster ◽  
Shalini Menon ◽  
Cortney C. Winkle ◽  
Fabio L. Urbina ◽  
Caroline Monkiewicz ◽  
...  

AbstractExtracellular netrin-1 and its receptor DCC promote axon branching in developing cortical neurons. Netrin-dependent morphogenesis is preceded by multimerization of DCC, activation of FAK and Src family kinases, and increases in exocytic vesicle fusion, yet how these occurrences are linked is unknown. Here we demonstrate that TRIM9-dependent ubiquitination of DCC blocks the interaction with and phosphorylation of FAK. Upon netrin-1 stimulation TRIM9 promotes DCC multimerization, but TRIM9-dependent ubiquitination of DCC is reduced, which promotes an interaction with FAK and subsequent FAK activation. We found that inhibition of FAK activity blocks elevated frequencies of exocytosis in vitro and elevated axon branching in vitro and in vivo. Although FAK inhibition decreased SNARE-mediated exocytosis, assembled SNARE complexes and vesicles adjacent to the plasma membrane were increased, suggesting a novel role for FAK in the progression from assembled SNARE complexes to vesicle fusion in developing murine neurons.Abbreviations used in this paperDCCDeleted in Colorectal CancerTRIMTripartite MotifSFKsrc family kinaseDCCKRnon ubiquitinatable DCC mutantVAMPvesicle associated membrane proteinTRIM9ΔRINGTRIM9 lacking the ubiquitin ligase RING domainTRIM9ΔSPRYTRIM9 variant lacking the DCC-binding SPRY domainTIRFTotal Internal Reflection FluorescencepYphosphotyrosineFAKipharmacological FAK inhibitor 14FRNKFAK related non-kinaseSTX-1Asyntaxin 1AIPimmunoprecipitate

2017 ◽  
Vol 28 (18) ◽  
pp. 2374-2385 ◽  
Author(s):  
Melissa Plooster ◽  
Shalini Menon ◽  
Cortney C. Winkle ◽  
Fabio L. Urbina ◽  
Caroline Monkiewicz ◽  
...  

Extracellular netrin-1 and its receptor deleted in colorectal cancer (DCC) promote axon branching in developing cortical neurons. Netrin-dependent morphogenesis is preceded by multimerization of DCC, activation of FAK and Src family kinases, and increases in exocytic vesicle fusion, yet how these occurrences are linked is unknown. Here we demonstrate that tripartite motif protein 9 (TRIM9)-dependent ubiquitination of DCC blocks the interaction with and phosphorylation of FAK. Upon netrin-1 stimulation TRIM9 promotes DCC multimerization, but TRIM9-dependent ubiquitination of DCC is reduced, which promotes an interaction with FAK and subsequent FAK activation. We found that inhibition of FAK activity blocks elevated frequencies of exocytosis in vitro and elevated axon branching in vitro and in vivo. Although FAK inhibition decreased soluble N-ethylmaleimide attachment protein receptor (SNARE)-mediated exocytosis, assembled SNARE complexes and vesicles adjacent to the plasma membrane increased, suggesting a novel role for FAK in the progression from assembled SNARE complexes to vesicle fusion in developing murine neurons.


2014 ◽  
Vol 205 (2) ◽  
pp. 217-232 ◽  
Author(s):  
Cortney C. Winkle ◽  
Leslie M. McClain ◽  
Juli G. Valtschanoff ◽  
Charles S. Park ◽  
Christopher Maglione ◽  
...  

Developmental axon branching dramatically increases synaptic capacity and neuronal surface area. Netrin-1 promotes branching and synaptogenesis, but the mechanism by which Netrin-1 stimulates plasma membrane expansion is unknown. We demonstrate that SNARE-mediated exocytosis is a prerequisite for axon branching and identify the E3 ubiquitin ligase TRIM9 as a critical catalytic link between Netrin-1 and exocytic SNARE machinery in murine cortical neurons. TRIM9 ligase activity promotes SNARE-mediated vesicle fusion and axon branching in a Netrin-dependent manner. We identified a direct interaction between TRIM9 and the Netrin-1 receptor DCC as well as a Netrin-1–sensitive interaction between TRIM9 and the SNARE component SNAP25. The interaction with SNAP25 negatively regulates SNARE-mediated exocytosis and axon branching in the absence of Netrin-1. Deletion of TRIM9 elevated exocytosis in vitro and increased axon branching in vitro and in vivo. Our data provide a novel model for the spatial regulation of axon branching by Netrin-1, in which localized plasma membrane expansion occurs via TRIM9-dependent regulation of SNARE-mediated vesicle fusion.


2020 ◽  
Author(s):  
Marine Lanfranchi ◽  
Géraldine Meyer-Dilhet ◽  
Raphael Dos Reis ◽  
Audrey Garcia ◽  
Camille Blondet ◽  
...  

ABSTRACTThe precise regulation of the cellular mechanisms underlying axonal morphogenesis is essential to the formation of functional neuronal networks. We previously identified the autism-candidate kinase NUAK1 as a central regulator of axon branching in mouse cortical neurons through the control of mitochondria trafficking. How does local mitochondrial position or function regulate axon branching during development? Here, we characterized the metabolic regulation in the developing axon and report a marked metabolic decorrelation between axon elongation and collateral branching. We next solved the cascade of event leading to presynaptic clustering and mitochondria recruitment during spontaneous branch formation. Interestingly and contrary to peripheral neurons, mitochondria are recruited after but not prior to branch formation in cortical neurons. Using flux metabolomics and fluorescent biosensors, we observed that NUAK1 deficiency significantly impairs mitochondrial metabolism and axonal ATP concentration. Upregulation of mitochondrial function is sufficient to rescue axonal branching in NUAK1 null neurons in vitro and in vivo. Altogether, our results indicate that NUAK1 exerts a dual function during axon branching through its ability to control mitochondria distribution and activity, and suggest that a mitochondrial-dependent remodeling of local metabolic homeostasis plays a critical role during axon morphogenesis.


2021 ◽  
Vol 22 (11) ◽  
pp. 5712
Author(s):  
Michał Tracz ◽  
Ireneusz Górniak ◽  
Andrzej Szczepaniak ◽  
Wojciech Białek

The SPL2 protein is an E3 ubiquitin ligase of unknown function. It is one of only three types of E3 ligases found in the outer membrane of plant chloroplasts. In this study, we show that the cytosolic fragment of SPL2 binds lanthanide ions, as evidenced by fluorescence measurements and circular dichroism spectroscopy. We also report that SPL2 undergoes conformational changes upon binding of both Ca2+ and La3+, as evidenced by its partial unfolding. However, these structural rearrangements do not interfere with SPL2 enzymatic activity, as the protein retains its ability to auto-ubiquitinate in vitro. The possible applications of lanthanide-based probes to identify protein interactions in vivo are also discussed. Taken together, the results of this study reveal that the SPL2 protein contains a lanthanide-binding site, showing for the first time that at least some E3 ubiquitin ligases are also capable of binding lanthanide ions.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yan Zhou ◽  
Tao Tao ◽  
Guangjie Liu ◽  
Xuan Gao ◽  
Yongyue Gao ◽  
...  

AbstractNeuronal apoptosis has an important role in early brain injury (EBI) following subarachnoid hemorrhage (SAH). TRAF3 was reported as a promising therapeutic target for stroke management, which covered several neuronal apoptosis signaling cascades. Hence, the present study is aimed to determine whether downregulation of TRAF3 could be neuroprotective in SAH-induced EBI. An in vivo SAH model in mice was established by endovascular perforation. Meanwhile, primary cultured cortical neurons of mice treated with oxygen hemoglobin were applied to mimic SAH in vitro. Our results demonstrated that TRAF3 protein expression increased and expressed in neurons both in vivo and in vitro SAH models. TRAF3 siRNA reversed neuronal loss and improved neurological deficits in SAH mice, and reduced cell death in SAH primary neurons. Mechanistically, we found that TRAF3 directly binds to TAK1 and potentiates phosphorylation and activation of TAK1, which further enhances the activation of NF-κB and MAPKs pathways to induce neuronal apoptosis. Importantly, TRAF3 expression was elevated following SAH in human brain tissue and was mainly expressed in neurons. Taken together, our study demonstrates that TRAF3 is an upstream regulator of MAPKs and NF-κB pathways in SAH-induced EBI via its interaction with and activation of TAK1. Furthermore, the TRAF3 may serve as a novel therapeutic target in SAH-induced EBI.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Garrett M. Fogo ◽  
Anthony R. Anzell ◽  
Kathleen J. Maheras ◽  
Sarita Raghunayakula ◽  
Joseph M. Wider ◽  
...  

AbstractThe mitochondrial network continually undergoes events of fission and fusion. Under physiologic conditions, the network is in equilibrium and is characterized by the presence of both elongated and punctate mitochondria. However, this balanced, homeostatic mitochondrial profile can change morphologic distribution in response to various stressors. Therefore, it is imperative to develop a method that robustly measures mitochondrial morphology with high accuracy. Here, we developed a semi-automated image analysis pipeline for the quantitation of mitochondrial morphology for both in vitro and in vivo applications. The image analysis pipeline was generated and validated utilizing images of primary cortical neurons from transgenic mice, allowing genetic ablation of key components of mitochondrial dynamics. This analysis pipeline was further extended to evaluate mitochondrial morphology in vivo through immunolabeling of brain sections as well as serial block-face scanning electron microscopy. These data demonstrate a highly specific and sensitive method that accurately classifies distinct physiological and pathological mitochondrial morphologies. Furthermore, this workflow employs the use of readily available, free open-source software designed for high throughput image processing, segmentation, and analysis that is customizable to various biological models.


2019 ◽  
Vol 5 (5) ◽  
pp. eaau8857 ◽  
Author(s):  
M. Di Rienzo ◽  
M. Antonioli ◽  
C. Fusco ◽  
Y. Liu ◽  
M. Mari ◽  
...  

Optimal autophagic activity is crucial to maintain muscle integrity, with either reduced or excessive levels leading to specific myopathies. LGMD2H is a muscle dystrophy caused by mutations in the ubiquitin ligase TRIM32, whose function in muscles remains not fully understood. Here, we show that TRIM32 is required for the induction of muscle autophagy in atrophic conditions using both in vitro and in vivo mouse models. Trim32 inhibition results in a defective autophagy response to muscle atrophy, associated with increased ROS and MuRF1 levels. The proautophagic function of TRIM32 relies on its ability to bind the autophagy proteins AMBRA1 and ULK1 and stimulate ULK1 activity via unanchored K63-linked polyubiquitin. LGMD2H-causative mutations impair TRIM32’s ability to bind ULK1 and induce autophagy. Collectively, our study revealed a role for TRIM32 in the regulation of muscle autophagy in response to atrophic stimuli, uncovering a previously unidentified mechanism by which ubiquitin ligases activate autophagy regulators.


Neuroscience ◽  
2007 ◽  
Vol 144 (4) ◽  
pp. 1509-1515 ◽  
Author(s):  
H.-S. Sun ◽  
Z.-P. Feng ◽  
P.A. Barber ◽  
A.M. Buchan ◽  
R.J. French

2010 ◽  
Vol 19 (18) ◽  
pp. 3642-3651 ◽  
Author(s):  
Maria M. Alves ◽  
Grzegorz Burzynski ◽  
Jean-Marie Delalande ◽  
Jan Osinga ◽  
Annemieke van der Goot ◽  
...  

Abstract Goldberg–Shprintzen syndrome (GOSHS) is a rare clinical disorder characterized by central and enteric nervous system defects. This syndrome is caused by inactivating mutations in the Kinesin Binding Protein (KBP) gene, which encodes a protein of which the precise function is largely unclear. We show that KBP expression is up-regulated during neuronal development in mouse cortical neurons. Moreover, KBP-depleted PC12 cells were defective in nerve growth factor-induced differentiation and neurite outgrowth, suggesting that KBP is required for cell differentiation and neurite development. To identify KBP interacting proteins, we performed a yeast two-hybrid screen and found that KBP binds almost exclusively to microtubule associated or related proteins, specifically SCG10 and several kinesins. We confirmed these results by validating KBP interaction with one of these proteins: SCG10, a microtubule destabilizing protein. Zebrafish studies further demonstrated an epistatic interaction between KBP and SCG10 in vivo . To investigate the possibility of direct interaction between KBP and microtubules, we undertook co-localization and in vitro binding assays, but found no evidence of direct binding. Thus, our data indicate that KBP is involved in neuronal differentiation and that the central and enteric nervous system defects seen in GOSHS are likely caused by microtubule-related defects.


1994 ◽  
Vol 191 (1) ◽  
pp. 141-153 ◽  
Author(s):  
C Doll ◽  
P Hochachka ◽  
S Hand

In previous papers, we have examined turtle cortical neurons in vitro for mechanisms of anoxic metabolic depression ('channel arrest' and changes in electrical parameters). Negative results prompted the current study with the aim of examining more closely the energy profile and metabolism of turtle cortical slices. Calorimetry is used to measure heat dissipation during normoxia and nitrogen perfusion (120 min) and the results are converted into an ATP utilization rate. These indicate that the control rate of ATP utilization (1.72 µmol ATP g-1 min-1) agrees closely with in vivo whole-brain metabolic measurements. Both nitrogen perfusion and pharmacologically induced anoxic (cyanide+N2) groups depressed heat dissipation considerably compared with the control value (nitrogen 37 %; pharmacological anoxia 49 %). The resulting ATP utilization estimates indicate metabolic depressions of 30 % (nitrogen) and 42 % (pharmacological anoxia). The slice preparation did not exhibit a change in any measured adenylate parameter for up to 120 min of anoxia or pharmacological anoxia. Significant changes did occur in [ADP], ATP/ADP ratio and energy charge after 240 min of exposure to anoxic conditions. These results support the idea that the turtle cortical slice preparation has a profound resistance to anoxia, with both nitrogen perfusion and pharmacological anoxia causing a rapid decline in heat dissipation and metabolism.


Sign in / Sign up

Export Citation Format

Share Document