scholarly journals A trapped double bond-photoisomerization intermediate in a bacterial photoreceptor

2017 ◽  
Author(s):  
Xiuling Xu ◽  
Astrid Höppner ◽  
Kai-Hong Zhao ◽  
Wolfgang Gärtner

AbbreviationsASUasymmetric unitBV, PCB, PVB (bilin compounds serving as chromophores)biliverdin Ixα, phycocyanobilin, phycoviolobilinCAPSON-cyclohexyl-2-hydroxyl-3-aminopropanesulfonic acidCBCRcyanobacteriochromeGAF (protein domain)cGMP-specific phosphodiesterases adenylyl cyclases and FhlAIMACimmobilized metal-affinity chromatographyMRmolecular replacementPAS (protein domain)Per-Arnt-SimPHY (protein domain)phytochrome-specificPfr, Pg, Prfar red-, green-, and red-absorbing states of phytochromes and CBCRsSummaryThe GAF3 domain of cyanobacteriochrome Slr1393 (Synechocystis PCC6803) with an in vivo assembled phycocyanobilin (PCB) chromophore has been crystallized in parental state (1.8 Å) and photoproduct state (1.86 Å), identified by 15-Z and 15-E chromophore configuration. Comparison of both structures for the same protein allows precise determination of structural changes after photo-activation. The chromophore photoisomerization causes an outward movement and partial helix formation of a formerly unstructured loop. A tryptophan residue located in this loop, in π-π stacking distance to PCB in the dark state, moves away by 14 Å opening the binding cleft for the entry of water molecules. Also the in vitro assembled protein (chromophore addition to apo-protein) has been crystallized (1.6 Å resolution). Most importantly, an intermediate structure was solved (2.1 Å) with the protein in photoproduct conformation and the chromophore already isomerized into the parental 15-Z configuration, thereby giving insight into chromophore-initiated conformational protein changes.Impact StatementThis manuscript presents crystal structures of a photochromic protein in both states, before (1.6 Å) and after (1.9 Å) the light induced photochemical event with sufficient resolution to allow detailed description of conformational changes of chromophore and protein. The light driven reaction, double bond photoisomerization of a covalently bound bilin chromophore is presented here for the first time. Our results allow determining the impact of the chromophore photochemistry on the protein conformation. In addition, we succeeded in trapping an intermediate carrying the chromophore already in isomerized state with the protein still in unchanged conformation. Absorption spectra of this intermediate clearly demonstrate a color change, thus allowing conclusion that the absorption of phytochromes is predominantly determined by the chromophore conformation alone with only moderate effect of the surrounding protein.Authors’ ContributionsXX, KHZ, and WG designed the experiment. XX generated the protein. AH performed crystallization trials, collected the X-ray diffraction data and solved the structure. All authors contributed in preparing the manuscript.

2011 ◽  
Vol 193 (22) ◽  
pp. 6315-6322 ◽  
Author(s):  
Daniel J. Schu ◽  
Revathy Ramachandran ◽  
Jared S. Geissinger ◽  
Ann M. Stevens

The quorum-sensing regulator EsaR fromPantoea stewartiisubsp.stewartiiis a LuxR homologue that is inactivated by acyl-homoserine lactone (AHL). In the corn pathogenP. stewartii, production of exopolysaccharide (EPS) is repressed by EsaR at low cell densities. However, at high cell densities when high concentrations of its cognate AHL signal are present, EsaR is inactivated and derepression of EPS production occurs. Thus, EsaR responds to AHL in a manner opposite to that of most LuxR family members. Depending on the position of its binding site within target promoters, EsaR serves as either a repressor or activator in the absence rather than in the presence of its AHL ligand. The effect of AHL on LuxR homologues has been difficult to studyin vitrobecause AHL is required for purification and stability. EsaR, however, can be purified without AHL enabling anin vitroanalysis of the response of the protein to ligand. Western immunoblots and pulse-chase experiments demonstrated that EsaR is stablein vivoin the absence or presence of AHL. Limitedin vitroproteolytic digestions of a biologically active His-MBP tagged version of EsaR highlighted intradomain and interdomain conformational changes that occur in the protein in response to AHL. Gel filtration chromatography of the full-length fusion protein and cross-linking of the N-terminal domain both suggest that this conformational change does not impact the multimeric state of the protein. These findings provide greater insight into the diverse mechanisms for AHL responsiveness found within the LuxR family.


Author(s):  
Joao Ramos ◽  
Valerie Laux ◽  
Michael Haertlein ◽  
V. Trevor Forsyth ◽  
Estelle Mossou ◽  
...  

The biological function of a protein is intimately related to its structure and dynamics, which in turn are determined by the way in which it has been folded. In vitro refolding is commonly used for the recovery of recombinant proteins that are expressed in the form of inclusion bodies and is of central interest in terms of the folding pathways that occur in vivo. Here, biophysical data are reported for in vitro-refolded hydrogenated hen egg-white lysozyme, in combination with atomic resolution X-ray diffraction analyses, which allowed detailed comparisons with native hydrogenated and refolded perdeuterated lysozyme. Distinct folding modes are observed for the hydrogenated and perdeuterated refolded variants, which are determined by conformational changes to the backbone structure of the Lys97–Gly104 flexible loop. Surprisingly, the structure of the refolded perdeuterated protein is closer to that of native lysozyme than that of the refolded hydrogenated protein. These structural differences suggest that the observed decreases in thermal stability and enzymatic activity in the refolded perdeuterated and hydrogenated proteins are consequences of the macromolecular deuteration effect and of distinct folding dynamics, respectively. These results are discussed in the context of both in vitro and in vivo folding, as well as of lysozyme amyloidogenesis.


2002 ◽  
Vol 30 (6) ◽  
pp. 1175-1180 ◽  
Author(s):  
O. Mayer ◽  
C. Waldsich ◽  
R. Grossberger ◽  
R. Schroeder

The td group I intron is inserted in the reading frame of the thymidylate synthase gene, which is mainly devoid of structural elements. In vivo, translation of the pre-mRNA is required for efficient folding of the intron into its splicing-competent structure. The ribosome probably resolves exon-intron interactions that interfere with splicing. Uncoupling splicing from translation, by introducing a non-sense codon into the upstream exon, reduces the splicing efficiency of the mutant pre-mRNA. Alternatively to the ribosome, co-expression of genes that encode proteins with RNA chaperone activity promote folding of the td pre-mRNA in vivo. These proteins also efficiently accelerate folding of the td pre-mRNA in vitro. In order to understand the mechanism of action of RNA chaperones, we probed the impact of the RNA chaperone StpA on the structure of the td intron in vivo and compared it with that of the well characterized Cyt-18 protein, which is a group-I-intron-specific splicing factor. We found that the two proteins have opposite effects on the structure of the td intron. While StpA loosens the three-dimensional structure, Cyt-18 tightens it up. Furthermore, mutations that destabilize the intron structure render the mutants sensitive to StpA, whereas splicing of these mutants is rescued by Cyt-18. Our results provide direct evidence for protein-induced conformational changes within a catalytic RNA in vivo. Whereas StpA resolves tertiary contacts enabling the RNA to refold, Cyt-18 contributes to the stabilization of the native three-dimensional structure.


2019 ◽  
Vol 476 (21) ◽  
pp. 3141-3159 ◽  
Author(s):  
Meiru Si ◽  
Can Chen ◽  
Zengfan Wei ◽  
Zhijin Gong ◽  
GuiZhi Li ◽  
...  

Abstract MarR (multiple antibiotic resistance regulator) proteins are a family of transcriptional regulators that is prevalent in Corynebacterium glutamicum. Understanding the physiological and biochemical function of MarR homologs in C. glutamicum has focused on cysteine oxidation-based redox-sensing and substrate metabolism-involving regulators. In this study, we characterized the stress-related ligand-binding functions of the C. glutamicum MarR-type regulator CarR (C. glutamicum antibiotic-responding regulator). We demonstrate that CarR negatively regulates the expression of the carR (ncgl2886)–uspA (ncgl2887) operon and the adjacent, oppositely oriented gene ncgl2885, encoding the hypothetical deacylase DecE. We also show that CarR directly activates transcription of the ncgl2882–ncgl2884 operon, encoding the peptidoglycan synthesis operon (PSO) located upstream of carR in the opposite orientation. The addition of stress-associated ligands such as penicillin and streptomycin induced carR, uspA, decE, and PSO expression in vivo, as well as attenuated binding of CarR to operator DNA in vitro. Importantly, stress response-induced up-regulation of carR, uspA, and PSO gene expression correlated with cell resistance to β-lactam antibiotics and aromatic compounds. Six highly conserved residues in CarR were found to strongly influence its ligand binding and transcriptional regulatory properties. Collectively, the results indicate that the ligand binding of CarR induces its dissociation from the carR–uspA promoter to derepress carR and uspA transcription. Ligand-free CarR also activates PSO expression, which in turn contributes to C. glutamicum stress resistance. The outcomes indicate that the stress response mechanism of CarR in C. glutamicum occurs via ligand-induced conformational changes to the protein, not via cysteine oxidation-based thiol modifications.


2013 ◽  
Vol 150 (3) ◽  
pp. 1024-1031 ◽  
Author(s):  
Mohammad Hossein Boskabady ◽  
Sakine Shahmohammadi Mehrjardi ◽  
Abadorrahim Rezaee ◽  
Houshang Rafatpanah ◽  
Sediqeh Jalali

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hiroaki Kanzaki ◽  
Tetsuhiro Chiba ◽  
Junjie Ao ◽  
Keisuke Koroki ◽  
Kengo Kanayama ◽  
...  

AbstractFGF19/FGFR4 autocrine signaling is one of the main targets for multi-kinase inhibitors (MKIs). However, the molecular mechanisms underlying FGF19/FGFR4 signaling in the antitumor effects to MKIs in hepatocellular carcinoma (HCC) remain unclear. In this study, the impact of FGFR4/ERK signaling inhibition on HCC following MKI treatment was analyzed in vitro and in vivo assays. Serum FGF19 in HCC patients treated using MKIs, such as sorafenib (n = 173) and lenvatinib (n = 40), was measured by enzyme-linked immunosorbent assay. Lenvatinib strongly inhibited the phosphorylation of FRS2 and ERK, the downstream signaling molecules of FGFR4, compared with sorafenib and regorafenib. Additional use of a selective FGFR4 inhibitor with sorafenib further suppressed FGFR4/ERK signaling and synergistically inhibited HCC cell growth in culture and xenograft subcutaneous tumors. Although serum FGF19high (n = 68) patients treated using sorafenib exhibited a significantly shorter progression-free survival and overall survival than FGF19low (n = 105) patients, there were no significant differences between FGF19high (n = 21) and FGF19low (n = 19) patients treated using lenvatinib. In conclusion, robust inhibition of FGF19/FGFR4 is of importance for the exertion of antitumor effects of MKIs. Serum FGF19 levels may function as a predictive marker for drug response and survival in HCC patients treated using sorafenib.


2021 ◽  
Vol 22 (11) ◽  
pp. 5712
Author(s):  
Michał Tracz ◽  
Ireneusz Górniak ◽  
Andrzej Szczepaniak ◽  
Wojciech Białek

The SPL2 protein is an E3 ubiquitin ligase of unknown function. It is one of only three types of E3 ligases found in the outer membrane of plant chloroplasts. In this study, we show that the cytosolic fragment of SPL2 binds lanthanide ions, as evidenced by fluorescence measurements and circular dichroism spectroscopy. We also report that SPL2 undergoes conformational changes upon binding of both Ca2+ and La3+, as evidenced by its partial unfolding. However, these structural rearrangements do not interfere with SPL2 enzymatic activity, as the protein retains its ability to auto-ubiquitinate in vitro. The possible applications of lanthanide-based probes to identify protein interactions in vivo are also discussed. Taken together, the results of this study reveal that the SPL2 protein contains a lanthanide-binding site, showing for the first time that at least some E3 ubiquitin ligases are also capable of binding lanthanide ions.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1414
Author(s):  
Josep M. Cambra ◽  
Emilio A. Martinez ◽  
Heriberto Rodriguez-Martinez ◽  
Maria A. Gil ◽  
Cristina Cuello

The development of chemically defined media is a growing trend in in vitro embryo production (IVP). Recently, traditional undefined culture medium with bovine serum albumin (BSA) has been successfully replaced by a chemically defined medium using substances with embryotrophic properties such as platelet factor 4 (PF4). Although the use of this medium sustains IVP, the impact of defined media on the embryonic transcriptome has not been fully elucidated. This study analyzed the transcriptome of porcine IVP blastocysts, cultured in defined (PF4 group) and undefined media (BSA group) by microarrays. In vivo-derived blastocysts (IVV group) were used as a standard of maximum embryo quality. The results showed no differentially expressed genes (DEG) between the PF4 and BSA groups. However, a total of 2780 and 2577 DEGs were detected when comparing the PF4 or the BSA group with the IVV group, respectively. Most of these genes were common in both in vitro groups (2132) and present in some enriched pathways, such as cell cycle, lysosome and/or metabolic pathways. These results show that IVP conditions strongly affect embryo transcriptome and that the defined culture medium with PF4 is a guaranteed replacement for traditional culture with BSA.


Tumor Biology ◽  
2021 ◽  
Vol 43 (1) ◽  
pp. 11-26
Author(s):  
Maike Busch ◽  
Natalia Miroschnikov ◽  
Jaroslaw Thomas Dankert ◽  
Marc Wiesehöfer ◽  
Klaus Metz ◽  
...  

BACKGROUND: Retinoblastoma (RB) is the most common childhood eye cancer. Chemotherapeutic drugs such as etoposide used in RB treatment often cause massive side effects and acquired drug resistances. Dysregulated genes and miRNAs have a large impact on cancer progression and development of chemotherapy resistances. OBJECTIVE: This study was designed to investigate the involvement of retinoic acid receptor alpha (RARα) in RB progression and chemoresistance as well as the impact of miR-138, a potential RARα regulating miRNA. METHODS: RARα and miR-138 expression in etoposide resistant RB cell lines and chemotherapy treated patient tumors compared to non-treated tumors was revealed by Real-Time PCR. Overexpression approaches were performed to analyze the effects of RARα on RB cell viability, apoptosis, proliferation and tumorigenesis. Besides, we addressed the effect of miR-138 overexpression on RB cell chemotherapy resistance. RESULTS: A binding between miR-138 and RARα was shown by dual luciferase reporter gene assay. The study presented revealed that RARα is downregulated in etoposide resistant RB cells, while miR-138 is endogenously upregulated. Opposing RARα and miR-138 expression levels were detectable in chemotherapy pre-treated compared to non-treated RB tumor specimen. Overexpression of RARα increases apoptosis levels and reduces tumor cell growth of aggressive etoposide resistant RB cells in vitro and in vivo. Overexpression of miR-138 in chemo-sensitive RB cell lines partly enhances cell viability after etoposide treatment. CONCLUSIONS: Our findings show that RARα acts as a tumor suppressor in retinoblastoma and is downregulated upon etoposide resistance in RB cells. Thus, RARα may contribute to the development and progression of RB chemo-resistance.


Sign in / Sign up

Export Citation Format

Share Document