scholarly journals Soluble Syntaxin 3 Functions as a Transcription Regulator

2017 ◽  
Author(s):  
Adrian J. Giovannone ◽  
Christine Winterstein ◽  
Pallavi Bhattaram ◽  
Elena Reales ◽  
Seng Hui Low ◽  
...  

SUMMARYSyntaxins - a conserved family of SNARE proteins - contain C-terminal transmembrane anchors required for their membrane fusion activity. Here we show that syntaxin 3 (Stx3) unexpectedly also functions as a nuclear regulator of gene expression. Alternative splicing leads to a soluble isoform, termed Stx3S, lacking the transmembrane anchor. Soluble Stx3S binds to the nuclear import factor RanBP5, targets to the nucleus and interacts physically and functionally with several transcription factors, including ETV4 and ATF2. Stx3S is differentially expressed in normal human tissues, during epithelial cell polarization, and in breast cancer vs. normal breast tissue. Inhibition of endogenous Stx3S expression leads to changes in the expression of cancer-associated genes and promotes cell proliferation. Similar nuclear-targeted, soluble forms of other syntaxins were identified suggesting that nuclear signaling is a conserved, novel function common among these membrane trafficking proteins.

2006 ◽  
Vol 173 (6) ◽  
pp. 937-948 ◽  
Author(s):  
Nikunj Sharma ◽  
Seng Hui Low ◽  
Saurav Misra ◽  
Bhattaram Pallavi ◽  
Thomas Weimbs

In polarized epithelial cells, syntaxin 3 localizes to the apical plasma membrane and is involved in membrane fusion of apical trafficking pathways. We show that syntaxin 3 contains a necessary and sufficient apical targeting signal centered around a conserved FMDE motif. Mutation of any of three critical residues within this motif leads to loss of specific apical targeting. Modeling based on the known structure of syntaxin 1 revealed that these residues are exposed on the surface of a three-helix bundle. Syntaxin 3 targeting does not require binding to Munc18b. Instead, syntaxin 3 recruits Munc18b to the plasma membrane. Expression of mislocalized mutant syntaxin 3 in Madin-Darby canine kidney cells leads to basolateral mistargeting of apical membrane proteins, disturbance of tight junction formation, and loss of ability to form an organized polarized epithelium. These results indicate that SNARE proteins contribute to the overall specificity of membrane trafficking in vivo, and that the polarity of syntaxin 3 is essential for epithelial cell polarization.


Reproduction ◽  
2020 ◽  
Vol 160 (4) ◽  
pp. 533-546
Author(s):  
Sadaf N Kalam ◽  
Louise Cole ◽  
Laura Lindsay ◽  
Christopher R Murphy

Luminal uterine epithelial cells (UEC) have a surge in vesicular activity during early uterine receptivity. It has been predicted these vesicles exit the UEC via exocytosis resulting in secretion and membrane trafficking. The present study investigated the changes in SNARE proteins VAMP2 (v-SNARE) and syntaxin 3 (t-SNARE) localisation and abundance in UECs during early pregnancy in the rat. We found VAMP2 and syntaxin 3 are significantly higher on day 5.5 compared to day 1 of pregnancy. On day 5.5, VAMP2 is perinuclear and syntaxin 3 is concentrated in the apical cytoplasm compared to a cytoplasmic localisation on day 1. This change in localisation and abundance show VAMP2 and syntaxin 3 are involved in vesicular movement and membrane trafficking in UECs during early pregnancy. This study also investigated the influence of cytoskeletal disruption of microtubules and actin filaments on VAMP2 and syntaxin 3 in UECs grown in vitro, since microtubules and actin influence vesicle trafficking. As expected, this study found disruption to microtubules with colchicine and actin with cytochalasin D impacted VAMP2 and syntaxin 3 localisation. These results suggest VAMP2 and syntaxin 3 are involved in the timely trafficking of vesicular membranes to the apical surface in UECs during early pregnancy, as are of microtubules and actin.


2021 ◽  
Vol 11 (5) ◽  
pp. 387
Author(s):  
Giacomo Santandrea ◽  
Chiara Bellarosa ◽  
Dino Gibertoni ◽  
Maria C. Cucchi ◽  
Alejandro M. Sanchez ◽  
...  

Normal breast tissue undergoes great variations during a woman’s life as a consequence of the different hormonal stimulation. The purpose of the present study was to examine the hormonal receptor expression variations according to age, menstrual cycle, menopausal state and body mass index. To this purpose, 49 tissue samples of normal breast tissue, obtained during surgery performed for benign and malignant conditions, were immunostained with Estrogen (ER), Progesterone (PR) and Androgen receptors (AR). In addition, Ki67 and Gross Cystic Disease Fluid Protein were studied. The data obtained revealed a great variability of hormone receptor expression. ER and AR generally increased in older and post-menopausal women, while young women presented a higher proliferative rate, evaluated with Ki67. PR increase was observed in women with BMI higher than 25. The different hormonal receptor expression could favor the development of breast cancer.


2012 ◽  
Vol 4 ◽  
pp. 306-309 ◽  
Author(s):  
Abdolhassan Talaiezadeh ◽  
Seyed Nematollah Jazayeri ◽  
Jamal Nateghi

2020 ◽  
Vol 68 (8) ◽  
pp. 561-570
Author(s):  
Jiyoung Kim ◽  
René Villadsen

Cells of the human breast gland express an array of keratins, of which some are used for characterizing both normal and neoplastic breast tissue. However, the expression pattern of certain keratins has yet to be detailed. Here, the expression of a differentiation marker of epidermal epithelium, keratin 10 (K10), was investigated in the human breast gland. While in normal breast tissue generally less than 1% of luminal epithelial cells expressed K10, in women >30 years of age glandular structures with K10-positive (K10pos) cells were found at higher frequency than in younger women. K10pos cells belong to a mature luminal compartment as they were negative for cKIT, positive for Ks20.8, and mostly non-cycling. In breast cancer, around 16% of primary breast carcinomas tested were positive for K10 by immunohistochemistry. Interestingly, K10pos tumor cells generally exhibit features of differentiation similar to their normal counterparts. Although this suggests that K10 is a marker of tumor differentiation, data based on gene expression analysis imply that high levels of K10 dictate a worse outcome for breast cancer patients. These findings can form the basis of future studies that should unravel which role K10 may play as a marker of breast cancer:


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Shoghag Panjarian ◽  
Jozef Madzo ◽  
Kelsey Keith ◽  
Carolyn M. Slater ◽  
Carmen Sapienza ◽  
...  

Abstract Background DNA methylation alterations have similar patterns in normal aging tissue and in cancer. In this study, we investigated breast tissue-specific age-related DNA methylation alterations and used those methylation sites to identify individuals with outlier phenotypes. Outlier phenotype is identified by unsupervised anomaly detection algorithms and is defined by individuals who have normal tissue age-dependent DNA methylation levels that vary dramatically from the population mean. Methods We generated whole-genome DNA methylation profiles (GSE160233) on purified epithelial cells and used publicly available Infinium HumanMethylation 450K array datasets (TCGA, GSE88883, GSE69914, GSE101961, and GSE74214) for discovery and validation. Results We found that hypermethylation in normal breast tissue is the best predictor of hypermethylation in cancer. Using unsupervised anomaly detection approaches, we found that about 10% of the individuals (39/427) were outliers for DNA methylation from 6 DNA methylation datasets. We also found that there were significantly more outlier samples in normal-adjacent to cancer (24/139, 17.3%) than in normal samples (15/228, 5.2%). Additionally, we found significant differences between the predicted ages based on DNA methylation and the chronological ages among outliers and not-outliers. Additionally, we found that accelerated outliers (older predicted age) were more frequent in normal-adjacent to cancer (14/17, 82%) compared to normal samples from individuals without cancer (3/17, 18%). Furthermore, in matched samples, we found that the epigenome of the outliers in the pre-malignant tissue was as severely altered as in cancer. Conclusions A subset of patients with breast cancer has severely altered epigenomes which are characterized by accelerated aging in their normal-appearing tissue. In the future, these DNA methylation sites should be studied further such as in cell-free DNA to determine their potential use as biomarkers for early detection of malignant transformation and preventive intervention in breast cancer.


2020 ◽  
Vol 105 (5) ◽  
pp. 1617-1628 ◽  
Author(s):  
Nina Dabrosin ◽  
Charlotta Dabrosin

Abstract Context Dense breast tissue is associated with 4 to 6 times higher risk of breast cancer by poorly understood mechanisms. No preventive therapy for this high-risk group is available. After menopause, breast density decreases due to involution of the mammary gland. In dense breast tissue, this process is haltered by undetermined biological actions. Growth hormone (GH) and insulin-like binding proteins (IGFBPs) play major roles in normal mammary gland development, but their roles in maintaining breast density are unknown. Objective To reveal in vivo levels of GH, IGFBPs, and other pro-tumorigenic proteins in the extracellular microenvironment in breast cancer, in normal breast tissue with various breast density in postmenopausal women, and premenopausal breasts. We also sought to determine possible correlations between these determinants. Setting and Design Microdialysis was used to collect extracellular in vivo proteins intratumorally from breast cancers before surgery and from normal human breast tissue from premenopausal women and postmenopausal women with mammographic dense or nondense breasts. Results Estrogen receptor positive breast cancers exhibited increased extracellular GH (P < .01). Dense breasts of postmenopausal women exhibited similar levels of GH as premenopausal breasts and significantly higher levels than in nondense breasts (P < .001). Similar results were found for IGFBP-1, -2, -3, and -7 (P < .01) and for IGFBP-6 (P <.05). Strong positive correlations were revealed between GH and IGFBPs and pro-tumorigenic matrix metalloproteinases, urokinase-type plasminogen activator, Interleukin 6, Interleukin 8, and vascular endothelial growth factor in normal breast tissue. Conclusions GH pathways may be targetable for cancer prevention therapeutics in postmenopausal women with dense breast tissue.


2006 ◽  
Vol 13 (2) ◽  
pp. 617-628 ◽  
Author(s):  
C L Wilson ◽  
A H Sims ◽  
A Howell ◽  
C J Miller ◽  
R B Clarke

Oestrogen (E) is essential for normal and cancer development in the breast, while anti-oestrogens have been shown to reduce the risk of the disease. However, little is known about the effect of E on gene expression in the normal human breast, particularly when the epithelium and stroma are intact. Previous expression profiles of the response to E have been performed on tumour cell lines, in the absence of stroma. We investigated gene expression in normal human breast tissue transplanted into 9–10-week-old female athymic nude (Balb/c nu/nu) mice. After 2 weeks, when epithelial proliferation is minimal, one-third of the mice were treated with 17β-oestradiol (E2) to give human luteal-phase levels in the mouse, which we have previously shown to induce maximal epithelial cell proliferation. RNA was isolated from treated and untreated mice, labelled and hybridized to Affymetrix HG-U133A (human) GeneChips. Gene expression levels were generated using BioConductor implementations of the RMA and MAS5 algorithms. E2 treatment was found to represent the largest source of variation in gene expression and cross-species hybridization of mouse RNA from xenograft samples was demonstrated to be negligible. Known E2-responsive genes (such as TFF1 and AREG), and genes thought to be involved in breast cancer metastasis (including mammoglobin, KRT19 and AGR2), were upregulated in response to E treatment. Genes known to be co-expressed with E receptor α in breast cancer cell lines and tumours were both upregulated (XBP-1 and GREB1) and downregulated (RARRES1 and GATA3). In addition, genes that are normally expressed in the myoepithelium and extracellular matrix that maintain the tissue microenvironment were also differentially expressed. This suggests that the response to oestrogen in normal breast is highly dependent upon epithelial–stromal/myoepithelial interactions which maintain the tissue microenvironment during epithelial cell proliferation.


Sign in / Sign up

Export Citation Format

Share Document