scholarly journals An open-source cryo-storage solution

2017 ◽  
Author(s):  
Eveline Ultee ◽  
Fred Schenkel ◽  
Wen Yang ◽  
Susanne Brenzinger ◽  
Jamie S. Depelteau ◽  
...  

AbstractThe field of cryo-electron microscopy is a rapidly growing method in structural biology. With this development, access to cryo-EM facilities becomes a bottleneck that results in long wait times between sample preparation and data acquisition. To improve sample storage, we developed a cryo-storage system with a more efficient and larger storage capacity that enables cryo-sample storage in a highly organized manner. This system is simple to use, cost-effective and easily adaptable for any type of grid box and storage dewar and any size cryo-EM laboratory.

2018 ◽  
Vol 24 (1) ◽  
pp. 60-63 ◽  
Author(s):  
Eveline Ultee ◽  
Fred Schenkel ◽  
Wen Yang ◽  
Susanne Brenzinger ◽  
Jamie S. Depelteau ◽  
...  

AbstractCryo-electron microscopy (cryo-EM) enables the study of biological structures in situ in great detail and to solve protein structures at Ångstrom level resolution. Due to recent advances in instrumentation and data processing, the field of cryo-EM is a rapidly growing. Access to facilities and national centers that house the state-of-the-art microscopes is limited due to the ever-rising demand, resulting in long wait times between sample preparation and data acquisition. To improve sample storage, we have developed a cryo-storage system with an efficient, high storage capacity that enables sample storage in a highly organized manner. This system is simple to use, cost-effective and easily adaptable for any type of grid storage box and dewar and any size cryo-EM laboratory.


Methods ◽  
2016 ◽  
Vol 100 ◽  
pp. 3-15 ◽  
Author(s):  
Rebecca F. Thompson ◽  
Matt Walker ◽  
C. Alistair Siebert ◽  
Stephen P. Muench ◽  
Neil A. Ranson

Soft Matter ◽  
2021 ◽  
Author(s):  
Edward Egelman ◽  
Fengbin Wang

In structural biology, cryo-electron microscopy (cryo-EM) has emerged as the main technique for determining the atomic structures of macromolecular complexes. This has largely been due to the introduction of direct...


Science ◽  
2018 ◽  
Vol 361 (6405) ◽  
pp. 876-880 ◽  
Author(s):  
Yifan Cheng

Cryo–electron microscopy, or simply cryo-EM, refers mainly to three very different yet closely related techniques: electron crystallography, single-particle cryo-EM, and electron cryotomography. In the past few years, single-particle cryo-EM in particular has triggered a revolution in structural biology and has become a newly dominant discipline. This Review examines the fascinating story of its start and evolution over the past 40-plus years, delves into how and why the recent technological advances have been so groundbreaking, and briefly considers where the technique may be headed in the future.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Abhishek Singharoy ◽  
Ivan Teo ◽  
Ryan McGreevy ◽  
John E Stone ◽  
Jianhua Zhao ◽  
...  

Two structure determination methods, based on the molecular dynamics flexible fitting (MDFF) paradigm, are presented that resolve sub-5 Å cryo-electron microscopy (EM) maps with either single structures or ensembles of such structures. The methods, denoted cascade MDFF and resolution exchange MDFF, sequentially re-refine a search model against a series of maps of progressively higher resolutions, which ends with the original experimental resolution. Application of sequential re-refinement enables MDFF to achieve a radius of convergence of ~25 Å demonstrated with the accurate modeling of β-galactosidase and TRPV1 proteins at 3.2 Å and 3.4 Å resolution, respectively. The MDFF refinements uniquely offer map-model validation and B-factor determination criteria based on the inherent dynamics of the macromolecules studied, captured by means of local root mean square fluctuations. The MDFF tools described are available to researchers through an easy-to-use and cost-effective cloud computing resource on Amazon Web Services.


2021 ◽  
Author(s):  
Nicole Dimos ◽  
Carl P.O. Helmer ◽  
Andrea M. Chanique ◽  
Markus C. Wahl ◽  
Robert Kourist ◽  
...  

Enzyme catalysis has emerged as a key technology for developing efficient, sustainable processes in the chemical, biotechnological and pharmaceutical industries. Plants provide large and diverse pools of biosynthetic enzymes that facilitate complex reactions, such as the formation of intricate terpene carbon skeletons, with exquisite specificity. High-resolution structural analysis of these enzymes is crucial to understand their mechanisms and modulate their properties by targeted engineering. Although cryo-electron microscopy (cryo-EM) has revolutionized structural biology, its applicability to high-resolution structure analysis of comparatively small enzymes is so far largely unexplored. Here, we show that cryo-EM can reveal the structures of ~120 kDa plant borneol dehydrogenases at or below 2 Å resolution, paving the way for the fast development of new biocatalysts that provide access to bioactive terpenes and terpenoids.


Lab on a Chip ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1378-1385 ◽  
Author(s):  
Dariush Ashtiani ◽  
Alex de Marco ◽  
Adrian Neild

Surface acoustic wave (SAW) atomisation is investigated in the context of cryo electron microscopy grid preparation. Here, the primary requirements are a reproducible and narrow plume of droplets delivering a low fluid flow rate.


2019 ◽  
Vol 5 (9) ◽  
pp. eaaw2853 ◽  
Author(s):  
Charles Vragniau ◽  
Joshua C. Bufton ◽  
Frédéric Garzoni ◽  
Emilie Stermann ◽  
Fruzsina Rabi ◽  
...  

Self-assembling virus-like particles represent highly attractive tools for developing next-generation vaccines and protein therapeutics. We created ADDomer, an adenovirus-derived multimeric protein-based self-assembling nanoparticle scaffold engineered to facilitate plug-and-play display of multiple immunogenic epitopes from pathogens. We used cryo–electron microscopy at near-atomic resolution and implemented novel, cost-effective, high-performance cloud computing to reveal architectural features in unprecedented detail. We analyzed ADDomer interaction with components of the immune system and developed a promising first-in-kind ADDomer-based vaccine candidate to combat emerging Chikungunya infectious disease, exemplifying the potential of our approach.


2015 ◽  
Vol 32 (3) ◽  
pp. 436-453 ◽  
Author(s):  
Kira J. Weissman

This review covers a breakthrough in the structural biology of the gigantic modular polyketide synthases (PKS): the structural characterization of intact modules by single-particle cryo-electron microscopy and small-angle X-ray scattering.


Sign in / Sign up

Export Citation Format

Share Document