scholarly journals Oscillatory Networks of High-Level Mental Alignment: A Perspective-Taking MEG Study

2017 ◽  
Author(s):  
R.A Seymour, ◽  
H. Wang, ◽  
G. Rippon, ◽  
K. Kessler,

AbstractMentally imagining another’s perspective is a high-level social process, reliant on manipulating internal representations of the self in an embodied manner. Recently Wang et al., (1) showed that theta-band (3-7Hz) brain oscillations within the right temporo-parietal junction (rTPJ) and brain regions coding for motor/body schema contribute to the process of perspective-taking. Using a task requiring participants to engage in embodied perspective-taking, we set out to unravel the extended functional brain network and its connections in detail. We found that increasing the angle of disparity between self and other perspective was accompanied by longer reaction times and increases in theta power within rTPJ, right lateral pre-frontal cortex (PFC) and right anterior cingulate cortex (ACC). Using nonparametric Granger-causality, we showed that during later stages of perspective-taking, the lateral PFC and ACC exert top-down influences over rTPJ, indicative of executive control processes required for managing conflicts between self and other perspectives. Finally, we quantified patterns of whole-brain phase coupling (imaginary coherence) in relation to rTPJ during high-level perspective taking. Results suggest that rTPJ increases its theta-band phase synchrony with brain regions involved in mentalizing and regions coding for motor/body schema; whilst decreasing its synchrony to visual regions. Implications for neurocognitive models are discussed, and it is proposed that rTPJ acts as a ‘hub’ to route bottom-up visual information to internal representations of the self during perspective-taking, co-ordinated by theta-band oscillations. The self is then projected onto the other’s perspective via embodied motor/body schema transformations, regulated by top-down cingulo-frontal activity.Significance StatementHigh-level social processing, such as the ability to imagine another’s visuospatial experience of the world (perspective taking), is a core part of what makes us human. Building on a substantial body of converging previous evidence, our study reveals how concerted activity across the cortex in low frequencies (theta: 3-7 Hz) implements this crucial human process. We found that oscillatory power and connectivity (imaginary coherence, nonparametric Granger causality) at theta frequency linked functional sub-networks of executive control, mentalizing, and sensorimotor/body schema via a main hub located in the right temporo-parietal junction (rTPJ). Our findings inform neurocognitive models of social cognition by describing the co-ordinated changes in brain network connectivity, mediated by theta oscillations, during perspective-taking.

2021 ◽  
Author(s):  
Zhaoqi Zhang ◽  
Qiming Yuan ◽  
Zeping Liu ◽  
Man Zhang ◽  
Junjie Wu ◽  
...  

Abstract Writing sequences play an important role in handwriting of Chinese characters. However, little is known regarding the integral brain patterns and network mechanisms of processing Chinese character writing sequences. The present study decoded brain patterns during observing Chinese characters in motion by using multi-voxel pattern analysis (MVPA), meta-analytic decoding analysis, and extended unified structural equation model (euSEM). We found that perception of Chinese character writing sequence recruited brain regions not only for general motor schema processing, i.e., the right inferior frontal gyrus, shifting and inhibition functions, i.e., the right postcentral gyrus and bilateral pre-SMA/dACC, but also for sensorimotor functions specific for writing sequences. More importantly, these brain regions formed a cooperatively top-down brain network where information was transmitted from brain regions for general motor schema processing to those specific for writing sequences. These findings not only shed light on the neural mechanisms of Chinese character writing sequences, but also extend the hierarchical control model on motor schema processing.


2010 ◽  
Vol 2010 ◽  
pp. 1-6 ◽  
Author(s):  
M. G. Tana ◽  
E. Montin ◽  
S. Cerutti ◽  
A. M. Bianchi

Functional magnetic resonance imaging (fMRI) was performed in eight healthy subjects to identify the localization, magnitude, and volume extent of activation in brain regions that are involved in blood oxygen level-dependent (BOLD) response during the performance of Conners' Continuous Performance Test (CPT). An extensive brain network was activated during the task including frontal, temporal, and occipital cortical areas and left cerebellum. The more activated cluster in terms of volume extent and magnitude was located in the right anterior cingulate cortex (ACC). Analyzing the dynamic trend of the activation in the identified areas during the entire duration of the sustained attention test, we found a progressive decreasing of BOLD response probably due to a habituation effect without any deterioration of the performances. The observed brain network is consistent with existing models of visual object processing and attentional control and may serve as a basis for fMRI studies in clinical populations with neuropsychological deficits in Conners' CPT performance.


2012 ◽  
Vol 24 (8) ◽  
pp. 1742-1752 ◽  
Author(s):  
Bryan T. Denny ◽  
Hedy Kober ◽  
Tor D. Wager ◽  
Kevin N. Ochsner

The distinction between processes used to perceive and understand the self and others has received considerable attention in psychology and neuroscience. Brain findings highlight a role for various regions, in particular the medial PFC (mPFC), in supporting judgments about both the self and others. We performed a meta-analysis of 107 neuroimaging studies of self- and other-related judgments using multilevel kernel density analysis [Kober, H., & Wager, T. D. Meta-analyses of neuroimaging data. Wiley Interdisciplinary Reviews, 1, 293–300, 2010]. We sought to determine what brain regions are reliably involved in each judgment type and, in particular, what the spatial and functional organization of mPFC is with respect to them. Relative to nonmentalizing judgments, both self- and other judgments were associated with activity in mPFC, ranging from ventral to dorsal extents, as well as common activation of the left TPJ and posterior cingulate. A direct comparison between self- and other judgments revealed that ventral mPFC as well as left ventrolateral PFC and left insula were more frequently activated by self-related judgments, whereas dorsal mPFC, in addition to bilateral TPJ and cuneus, was more frequently activated by other-related judgments. Logistic regression analyses revealed that ventral and dorsal mPFC lay at opposite ends of a functional gradient: The z coordinates reported in individual studies predicted whether the study involved self- or other-related judgments, which were associated with increasingly ventral or dorsal portions of mPFC, respectively. These results argue for a distributed rather than localizationist account of mPFC organization and support an emerging view on the functional heterogeneity of mPFC.


2019 ◽  
Vol 61 (1) ◽  
pp. 67-75 ◽  
Author(s):  
Pei-Wen Zhu ◽  
You Chen ◽  
Ying-Xin Gong ◽  
Nan Jiang ◽  
Wen-Feng Liu ◽  
...  

Background Neuroimaging studies revealed that trigeminal neuralgia was related to alternations in brain anatomical function and regional function. However, the functional characteristics of network organization in the whole brain is unknown. Purpose The aim of the present study was to analyze potential functional network brain-activity changes and their relationships with clinical features in patients with trigeminal neuralgia via the voxel-wise degree centrality method. Material and Methods This study involved a total of 28 trigeminal neuralgia patients (12 men, 16 women) and 28 healthy controls matched in sex, age, and education. Spontaneous brain activity was evaluated by degree centrality. Correlation analysis was used to examine the correlations between behavioral performance and average degree centrality values in several brain regions. Results Compared with healthy controls, trigeminal neuralgia patients had significantly higher degree centrality values in the right lingual gyrus, right postcentral gyrus, left paracentral lobule, and bilateral inferior cerebellum. Receiver operative characteristic curve analysis of each brain region confirmed excellent accuracy of the areas under the curve. There was a positive correlation between the mean degree centrality value of the right postcentral gyrus and VAS score (r = 0.885, P < 0.001). Conclusions Trigeminal neuralgia causes abnormal brain network activity in multiple brain regions, which may be related to underlying disease mechanisms.


2006 ◽  
Vol 6 ◽  
pp. 1146-1163 ◽  
Author(s):  
Jean Decety ◽  
Claus Lamm

Empathy is the ability to experience and understand what others feel without confusion between oneself and others. Knowing what someone else is feeling plays a fundamental role in interpersonal interactions. In this paper, we articulate evidence from social psychology and cognitive neuroscience, and argue that empathy involves both emotion sharing (bottom-up information processing) and executive control to regulate and modulate this experience (top-down information processing), underpinned by specific and interacting neural systems. Furthermore, awareness of a distinction between the experiences of the self and others constitutes a crucial aspect of empathy. We discuss data from recent behavioral and functional neuroimaging studies with an emphasis on the perception of pain in others, and highlight the role of different neural mechanisms that underpin the experience of empathy, including emotion sharing, perspective taking, and emotion regulation.


2020 ◽  
Vol 32 (8) ◽  
pp. 1577-1589
Author(s):  
Suzanne van de Groep ◽  
Kiki Zanolie ◽  
Eveline A. Crone

Giving is often characterized by the conflicting decision to give up something of value to benefit others. Recent evidence indicated that giving is highly context-dependent. To unravel the neural correlates of social context, in this study, young adults ( n = 32) performed a novel giving fMRI paradigm, in which they divided coins between self and known (friends) or unknown (unfamiliar) others. A second manipulation included presence of others; giving decisions were made with an audience or anonymously. Results showed that participants gave more coins to a friend than to an unfamiliar other and generally gave more in the presence of an audience. On a neural level, medial prefrontal cortex and the right insula were most active for relatively generous decisions. These findings possibly reflect that aversion of norm deviation or fairness concerns drive differences in the frequency of giving. Next, activation in separate subregions of the TPJ-IPL (i.e., a region that comprises the TPJ and inferior parietal lobule) was found for target and audience contexts. Overall, our findings suggest that donation size and social contextual information are processed in separable brain regions and that TPJ-IPL plays an important role in balancing self- and other-oriented motives related to the social context.


2019 ◽  
Author(s):  
G. Dumas ◽  
Q. Moreau ◽  
E. Tognoli ◽  
J.A.S. Kelso

AbstractHow does the brain allow us to interact with others, and above all how does it handle situations when the goals of the interactors overlap (i.e. cooperation) or differ (i.e. competition)? Social neuroscience has already provided some answers to these questions but has tended to treat high-level, cognitive interpretations of social behavior separately from the sensorimotor mechanisms upon which they rely. The goal here is to identify the underlying neural processes and mechanisms linking sensorimotor coordination and intention attribution. We combine the Human Dynamic Clamp (HDC), a novel paradigm for studying realistic social behavior between self and other in well-controlled laboratory conditions, with high resolution electroencephalography (EEG). The collection of humanness and intention attribution reports, kinematics and neural data affords an opportunity to relate brain activity to the behavior of the HDC as well as to what the human is doing. Behavioral results demonstrate that sensorimotor coordination influences judgements of cooperativeness and humanness. Analysis of brain dynamics reveals two distinct networks related to integration of visuo-motor information from self and other. The two networks overlap over the right parietal region, an area known to be important for interpersonal motor interactions. Furthermore, connectivity analysis highlights how the judgement of humanness and cooperation of others modulate the connection between the right parietal hub and prefrontal cortex. These results reveal how distributed neural dynamics integrates information from ‘low-level’ sensorimotor mechanisms and ‘high-level’ social cognition to support the realistic social behaviors that play out in real time during interactive scenarios.Significance StatementDaily social interactions require us to coordinate with others and to reflect on their potential motives. This study investigates the brain and behavioral dynamics of these two key aspects of social cognition. Combining high-density electroencephalography and the Human Dynamic Clamp (a Virtual Partner endowed with human-based coordination dynamics), we show first, that several features of sensorimotor coordination influence attribution of intention and judgement of humanness; second, that the right parietal lobe is a key integration hub between information related to self- and other-behavior; and third, that the posterior online social hub is functionally coupled to anterior offline brain structures to support mentalizing about others. Our results stress the complementary nature of low-level and high-level mechanisms that underlie social cognition.


2009 ◽  
Vol 102 (5) ◽  
pp. 2994-3003 ◽  
Author(s):  
Laurent Petit ◽  
Laure Zago ◽  
Mathieu Vigneau ◽  
Frédéric Andersson ◽  
Fabrice Crivello ◽  
...  

Because eye movements are a fundamental tool for spatial exploration, we hypothesized that the neural bases of these movements in humans should be under right cerebral dominance, as already described for spatial attention. We used functional magnetic resonance imaging in 27 right-handed participants who alternated central fixation with either large or small visually guided saccades (VGS), equally performed in both directions. Hemispheric functional asymmetry was analyzed to identify whether brain regions showing VGS activation elicited hemispheric asymmetries. Hemispheric anatomical asymmetry was also estimated to assess its influence on the VGS functional lateralization. Right asymmetrical activations of a saccadic/attentional system were observed in the lateral frontal eye fields (FEF), the anterior part of the intraparietal sulcus (aIPS), the posterior third of the superior temporal sulcus (STS), the occipitotemporal junction (MT/V5 area), the middle occipital gyrus, and medially along the calcarine fissure (V1). The present rightward functional asymmetries were not related to differences in gray matter (GM) density/sulci positions between right and left hemispheres in the precentral, intraparietal, superior temporal, and extrastriate regions. Only V1 asymmetries were explained for almost 20% of the variance by a difference in the position of the right and left calcarine fissures. Left asymmetrical activations of a saccadic motor system were observed in the medial FEF and in the motor strip eye field along the Rolando sulcus. They were not explained by GM asymmetries. We suggest that the leftward saccadic motor asymmetry is part of a general dominance of the left motor cortex in right-handers, which must include an effect of sighting dominance. Our results demonstrate that, although bilateral by nature, the brain network involved in the execution of VGSs, irrespective of their direction, presented specific right and left asymmetries that were not related to anatomical differences in sulci positions.


2021 ◽  
Vol 11 (6) ◽  
pp. 722
Author(s):  
Sara Mascheretti ◽  
Denis Peruzzo ◽  
Chiara Andreola ◽  
Martina Villa ◽  
Tommaso Ciceri ◽  
...  

Increasing evidence supports the presence of deficits in the visual magnocellular (M) system in developmental dyslexia (DD). The M system is related to the fronto-parietal attentional network. Previous neuroimaging studies have revealed reduced/absent activation within the visual M pathway in DD, but they have failed to characterize the extensive brain network activated by M stimuli. We performed a multivariate pattern analysis on a Region of Interest (ROI) level to differentiate between children with DD and age-matched typical readers (TRs) by combining full-field sinusoidal gratings, controlled for spatial and temporal frequencies and luminance contrast, and a coherent motion (CM) sensitivity task at 6%-CML6, 15%-CML15 and 40%-CML40. ROIs spanning the entire visual dorsal stream and ventral attention network (VAN) had higher discriminative weights and showed higher act1ivation in TRs than in children with DD. Of the two tasks, CM had the greatest weight when classifying TRs and children with DD in most of the ROIs spanning these streams. For the CML6, activation within the right superior parietal cortex positively correlated with reading skills. Our approach highlighted the dorsal stream and the VAN as highly discriminative areas between children with DD and TRs and allowed for a better characterization of the “dorsal stream vulnerability” underlying DD.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xin Wu ◽  
Yufang Zhao

Previous studies have found the effects of stereotype threat (ST) on cognitive processes, emotions, and motivations which could account for the underperformance in domain tasks. Efficient brain function does not require the function of different brain regions during specific tasks, but it does require the brain networks on which information is transported. Based on these, the effects of ST on the degree centrality under the resting state of brain regions related to these processes were investigated under math-related ST. The results showed that RSDC was decreased in the left hippocampus and left middle occipital gyrus (MOC), while RSDC was increased in the left precuneus, the right angular gyrus (AG), and the right superior parietal gyrus (SPG) under ST. Interestingly, we also found that the right-left anterior temporal lobe (ATL) and the right hippocampus were negatively correlated with manipulation check (MC) score in the ST group, while the right-left ATL and the right hippocampus were positively correlated with MC score in the control group. These results might reflect those individuals who attempted to inhibit the negative emotions induced by the negative stereotypes under ST conditions while increasing the self-relevant processes by retrieving episodic memory or autobiographical memory.


Sign in / Sign up

Export Citation Format

Share Document