scholarly journals Stretchable Composite Acoustic Transducer for Wearable Monitoring of Vital Signs

2019 ◽  
Author(s):  
Yasin Cotur ◽  
Michael Kasimatis ◽  
Matti Kaisti ◽  
Selin Olenik ◽  
Charis Georgiou ◽  
...  

AbstractWe report a highly flexible, stretchable, and mechanically robust low-cost soft composite consisting of silicone polymers and water (or hydrogels). When combined with conventional acoustic transducers, the materials reported enable high performance real-time monitoring of heart and respiratory patterns over layers of clothing (or furry skin of animals) without the need for direct contact with the skin. Our approach enables an entirely new method of fabrication that involves encapsulation of water and hydrogels with silicones and exploits the ability of sound waves to travel through the body. The system proposed outperforms commercial, metal-based stethoscopes for the auscultation of the heart when worn over clothing and is less susceptible to motion artefacts. We have tested the system both with human and furry animal subjects (i.e. dogs), primarily focusing on monitoring the heart, however, we also present initial results on monitoring breathing. Our work is especially important because it is the first demonstration of a stretchable sensor that is suitable for use with furry animals and do not require shaving of the animal for data acquisition.

2021 ◽  
Vol 118 (43) ◽  
pp. e2104925118
Author(s):  
Hyoyoung Jeong ◽  
Sung Soo Kwak ◽  
Seokwoo Sohn ◽  
Jong Yoon Lee ◽  
Young Joong Lee ◽  
...  

Early identification of atypical infant movement behaviors consistent with underlying neuromotor pathologies can expedite timely enrollment in therapeutic interventions that exploit inherent neuroplasticity to promote recovery. Traditional neuromotor assessments rely on qualitative evaluations performed by specially trained personnel, mostly available in tertiary medical centers or specialized facilities. Such approaches are high in cost, require geographic proximity to advanced healthcare resources, and yield mostly qualitative insight. This paper introduces a simple, low-cost alternative in the form of a technology customized for quantitatively capturing continuous, full-body kinematics of infants during free living conditions at home or in clinical settings while simultaneously recording essential vital signs data. The system consists of a wireless network of small, flexible inertial sensors placed at strategic locations across the body and operated in a wide-bandwidth and time-synchronized fashion. The data serve as the basis for reconstructing three-dimensional motions in avatar form without the need for video recordings and associated privacy concerns, for remote visual assessments by experts. These quantitative measurements can also be presented in graphical format and analyzed with machine-learning techniques, with potential to automate and systematize traditional motor assessments. Clinical implementations with infants at low and at elevated risks for atypical neuromotor development illustrates application of this system in quantitative and semiquantitative assessments of patterns of gross motor skills, along with body temperature, heart rate, and respiratory rate, from long-term and follow-up measurements over a 3-mo period following birth. The engineering aspects are compatible for scaled deployment, with the potential to improve health outcomes for children worldwide via early, pragmatic detection methods.


Research ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Xiangyu Ou ◽  
Xue Chen ◽  
Xianning Xu ◽  
Lili Xie ◽  
Xiaofeng Chen ◽  
...  

X-ray imaging is a low-cost, powerful technology that has been extensively used in medical diagnosis and industrial nondestructive inspection. The ability of X-rays to penetrate through the body presents great advances for noninvasive imaging of its internal structure. In particular, the technological importance of X-ray imaging has led to the rapid development of high-performance X-ray detectors and the associated imaging applications. Here, we present an overview of the recent development of X-ray imaging-related technologies since the discovery of X-rays in the 1890s and discuss the fundamental mechanism of diverse X-ray imaging instruments, as well as their advantages and disadvantages on X-ray imaging performance. We also highlight various applications of advanced X-ray imaging in a diversity of fields. We further discuss future research directions and challenges in developing advanced next-generation materials that are crucial to the fabrication of flexible, low-dose, high-resolution X-ray imaging detectors.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2603 ◽  
Author(s):  
Antonio Algar ◽  
Esteban Codina ◽  
Javier Freire

The indirect calculation from acceleration of transversal displacement of the piston inside the body of a double effect linear hydraulic cylinder during its operating cycle is assessed. Currently an extensive effort exists in the improvement of the mechanical and electronic design of the highly sophisticated MEMS accelerometers. Nevertheless, the predictable presence of measurement errors in the current commercial accelerometers is the main origin of velocity and displacement measurement deviations during integration of the acceleration. A bond graph numerical simulation model of the electromechanical system has been developed in order to forecast the effect of several measurement errors in the use of low cost two axes accelerometers. The level of influence is assessed using quality indicators and visual signal evaluation, for both simulations and experimental results. The obtained displacements results are highly influenced by the diverse dynamic characteristics of each measuring axis. The small measuring errors of a simulated extremely high performance sensor generate only moderate effects in longitudinal displacement but deep deviations in the reconstruction of piston transversal movements. The bias error has been identified as the source of the higher deviations of displacement results; although, its consequences can be easily corrected.


Proceedings ◽  
2019 ◽  
Vol 42 (1) ◽  
pp. 32
Author(s):  
Sandra Sendra ◽  
Pablo Romero-Díaz ◽  
José Luis García-Navas ◽  
Jaime Lloret

In recent years, the organization of cross-country and popular races where hundreds of people participate has become a significant trend. In these events, runners usually subject the body to extreme situations that can lead to various types of indisposition, and they can also suffer falls. Currently, the electronic systems used in this type of race only monitor when runners pass through checkpoints. However, it is necessary to implement systems that enable the control of the population of runners and the monitoring of their status all the times. For this reason, this paper proposes the design of a low-cost system for monitoring and controlling runners in this type of event. The system is formed by a network architecture in infrastructure mode based on low-power wide-area network (LPWAN) technology. Each runner will carry an electronic device that will allow their position and vital signs to be monitored. Likewise, it will incorporate an S.O.S. button that will allow runners to send a signal to the organization should they require help. All these data will be sent through the network to a database, which will allow the organization and bystanders of the race to check the location and history of vital signs of runners. This paper shows the proposal of a design of our system and the different practical experiments that have been carried out with the devices that have allowed for the proposition of this design.


Author(s):  
P.Venu Gopala Rao ◽  
Eslavath Raja ◽  
Ramakrishna Gandi ◽  
G. Ravi Kumar

IoT (Internet of Things) has become most significant area of research to design an efficient data enabled services with the help of sensors. In this paper, a low-cost system design for e-healthcare service to process the sensitive health data is presented. Vital signs of the human body are measured from the patient location and shared with a registered medical professional for consultation. Temperature and heart rate are the major signals obtained from a patient for the initial build of the system. Data is sent to a cloud server where processing and analysis is provided for the medical professional to analyze. Secure transmission and dissemination of data through the cloud server is provided with an authentication system and the patient could be able to track his data through a smart phone on connecting to the cloud server. A prototype of the system along with its design parameters has been discussed.


2020 ◽  
Vol 16 (3) ◽  
pp. 246-253
Author(s):  
Marcin Gackowski ◽  
Marcin Koba ◽  
Stefan Kruszewski

Background: Spectrophotometry and thin layer chromatography have been commonly applied in pharmaceutical analysis for many years due to low cost, simplicity and short time of execution. Moreover, the latest modifications including automation of those methods have made them very effective and easy to perform, therefore, the new UV- and derivative spectrophotometry as well as high performance thin layer chromatography UV-densitometric (HPTLC) methods for the routine estimation of amrinone and milrinone in pharmaceutical formulation have been developed and compared in this work since European Pharmacopoeia 9.0 has yet incorporated in an analytical monograph a method for quantification of those compounds. Methods: For the first method the best conditions for quantification were achieved by measuring the lengths between two extrema (peak-to-peak amplitudes) 252 and 277 nm in UV spectra of standard solutions of amrinone and a signal at 288 nm of the first derivative spectra of standard solutions of milrinone. The linearity between D252-277 signal and concentration of amironone and 1D288 signal of milrinone in the same range of 5.0-25.0 μg ml/ml in DMSO:methanol (1:3 v/v) solutions presents the square correlation coefficient (r2) of 0,9997 and 0.9991, respectively. The second method was founded on HPTLC on silica plates, 1,4-dioxane:hexane (100:1.5) as a mobile phase and densitometric scanning at 252 nm for amrinone and at 271 nm for milrinone. Results: The assays were linear over the concentration range of 0,25-5.0 μg per spot (r2=0,9959) and 0,25-10.0 μg per spot (r2=0,9970) for amrinone and milrinone, respectively. The mean recoveries percentage were 99.81 and 100,34 for amrinone as well as 99,58 and 99.46 for milrinone, obtained with spectrophotometry and HPTLC, respectively. Conclusion: The comparison between two elaborated methods leads to the conclusion that UV and derivative spectrophotometry is more precise and gives better recovery, and that is why it should be applied for routine estimation of amrinone and milrinone in bulk drug, pharmaceutical forms and for therapeutic monitoring of the drug.


2019 ◽  
Vol 19 (11) ◽  
pp. 1382-1387
Author(s):  
Ahmet M. Şenışık ◽  
Çiğdem İçhedef ◽  
Ayfer Y. Kılçar ◽  
Eser Uçar ◽  
Kadir Arı ◽  
...  

Background: Peptide-based agents are used in molecular imaging due to their unique properties, such as rapid clearance from the circulation, high affinity and target selectivity. Many of the radiolabeled peptides have been clinically experienced with diagnostic accuracy. The aim of this study was to investigate in vivo biological behavior of [99mTc(CO)3(H2O)3]+ radiolabeled glycylglycine (GlyGly). Methods: Glycylglycine was radiolabeled with a high radiolabeling yield of 94.69±2%, and quality control of the radiolabeling process was performed by thin layer radiochromatography (TLRC) and High-Performance Liquid Radiochromatography (HPLRC). Lipophilicity study for radiolabeled complex (99mTc(CO)3-Gly-Gly) was carried out using solvent extraction. The in vivo evaluation was performed by both biodistribution and SPECT imaging. Results: The high radiolabelling yield of 99mTc(CO)3-GlyGly was obtained and verified by TLRC and HPLRC as well. According to the in vivo results, SPECT images and biodistribution data are in good accordance. The excretion route from the body was both hepatobiliary and renal. Conclusion: This study shows that 99mTc(CO)3-GlyGly has the potential to be used as a peptide-based imaging agent. Further studies, 99mTc(CO)3-GlyGly can be performed on tumor-bearing animals.


Sign in / Sign up

Export Citation Format

Share Document