scholarly journals Positional isomers of a non-nucleoside substrate differentially affect myosin function

2019 ◽  
Author(s):  
M. Woodward ◽  
E. Ostrander ◽  
S.P. Jeong ◽  
X. Liu ◽  
B. Scott ◽  
...  

AbstractMolecular motors have evolved to transduce chemical energy from adenosine triphosphate into mechanical work to drive essential cellular processes, from muscle contraction to vesicular transport. Dysfunction of these motors is a root cause of many pathologies necessitating the need for intrinsic control over molecular motor function. Herein, we demonstrate that positional isomerism can be used as a simple and powerful tool to control the molecular motor of muscle, myosin. Using three isomers of a synthetic non-nucleoside triphosphate we demonstrate that myosin’s force and motion generating capacity can be dramatically altered at both the ensemble and single molecule levels. By correlating our experimental results with computation, we show that each isomer exerts intrinsic control by affecting distinct steps in myosin’s mechano-chemical cycle. Our studies demonstrate that subtle variations in the structure of an abiotic energy source can be used to control the force and motility of myosin without altering myosin’s structure.Statement of SignificanceMolecular motors transduce chemical energy from ATP into the mechanical work inside a cell, powering everything from muscle contraction to vesicular transport. While ATP is the preferred source of energy, there is growing interest in developing alternative sources of energy to gain control over molecular motors. We synthesized a series of synthetic compounds to serve as alternative energy sources for muscle myosin. Myosin was able to use this energy source to generate force and velocity. And by using different isomers of this compound we were able to modulate, and even inhibit, the activity of myosin. This suggests that changing the isomer of the substrate could provide a simple, yet powerful, approach to gain control over molecular motor function.

2020 ◽  
Author(s):  
U.L. Mallimadugula ◽  
E.A. Galburt

ABSTRACTMolecular motors convert chemical potential energy into mechanical work and perform a great number of critical biological functions. Examples include the polymerization and manipulation of nucleic acids, the generation of cellular motility and contractility, the formation and maintenance of cell shape, and the transport of materials within cells. The mechanisms underlying these molecular machines are routinely divided into two categories: Brownian ratchet and power stroke. While a ratchet uses chemical energy to bias thermally activated motion, a stroke depends on a direct coupling between chemical events and motion. However, the multi-dimensional nature of protein energy landscapes allows for the possibility of multiple reaction paths connecting two states. Here, we investigate the properties of a hypothetical molecular motor able to utilize parallel ratchet and stroke translocation mechanisms. We explore motor velocity and force-dependence as a function of the energy landscape of each path and reveal the potential for such a mechanism to result in an optimum force for motor function. We explore how the presence of this optimum depends on the rates of the individual paths and show that the distribution of stepping times characterized by the randomness parameter may be used to test for parallel path mechanisms. Lastly, we caution that experimental data consisting solely of measurements of velocity as a function of ATP concentration and force cannot be used to eliminate the possibility of such a parallel path mechanism.SIGNIFICANCEMolecular motors perform various mechanical functions in cells allowing them to move, replicate and perform various housekeeping functions required for life. Biophysical studies often aim to determine the molecular mechanism by which these motors convert chemical energy to mechanical work by fitting experimental data with kinetic models that fall into one of two classes: Brownian ratchets or power strokes. However, nothing a priori requires that a motor function via a single mechanism. Here, we consider a theoretical construct where a motor has access to both class of mechanism in parallel. Combining stochastic simulations and analytical solutions we describe unique signatures of such a mechanism that could be observed experimentally. We also show that absence of these signatures does not formally eliminate the existence of such a parallel mechanism. These findings expand our theoretical understanding of the potential motor behaviors with which to interpret experimental results.


Physiology ◽  
2002 ◽  
Vol 17 (5) ◽  
pp. 213-218 ◽  
Author(s):  
Caspar Rüegg ◽  
Claudia Veigel ◽  
Justin E. Molloy ◽  
Stephan Schmitz ◽  
John C. Sparrow ◽  
...  

Muscle myosin II is an ATP-driven, actin-based molecular motor. Recent developments in optical tweezers technology have made it possible to study movement and force production on the single-molecule level and to find out how different myosin isoforms may have adapted to their specific physiological roles.


2014 ◽  
Vol 70 (a1) ◽  
pp. C108-C108
Author(s):  
Yujie Sun

Molecular motors are proteins that convert chemical energy directly into mechanical work in the cell, driving many cellular processes. Given their intrinsic unsynchronous nature, single molecule fluorescence and manipulation techniques are nearly the ultimate tools to understand the mechanisms of molecular motors. I will talk about single molecule fluorescence studies of cytoskeleton associated motors, and their roles in cellular trafficking and membrane shaping of intra-cellular structures.


2019 ◽  
Author(s):  
D.B Cortes ◽  
M. Gordon ◽  
F. Nédélec ◽  
A.S. Maddox

ABSTRACTMolecular motors drive cytoskeletal rearrangements to change cell shape. Myosins are the motors that move, crosslink, and modify the actin cytoskeleton. The primary force generator in contractile actomyosin networks is non-muscle myosin II (NMMII), a molecular motor that assembles into ensembles that bind, slide, and crosslink actin filaments (F-actin). The multivalence of NMMII ensembles and their multiple roles have confounded the resolution of crucial questions including how the number of NMMII subunits affects dynamics, and what affects the relative contribution of ensembles’ crosslinking versus motoring activities. Since biophysical measurements of ensembles are sparse, modeling of actomyosin networks has aided in discovering the complex behaviors of NMMII ensembles. Myosin ensembles have been modeled via several strategies with variable discretization/coarse-graining and unbinding dynamics, and while general assumptions that simplify motor ensembles result in global contractile behaviors, it remains unclear which strategies most accurately depict cellular activity. Here, we used an agent-based platform, Cytosim, to implement several models of NMMII ensembles. Comparing the effects of bond type, we found that ensembles of catch-slip and catch motors were the best force generators and binders of filaments. Slip motor ensembles were capable of generating force but unbound frequently, resulting in slower contractile rates of contractile networks. Coarse-graining of these ensemble types from two sets of 16 motors on opposite ends of a stiff rod to two binders, each representing 16 motors, reduced force generation, contractility, and the total connectivity of filament networks for all ensemble types. A parallel cluster model (PCM) previously used to describe ensemble dynamics via statistical mechanics, allowed better contractility with coarse-graining, though connectivity was still markedly reduced for this ensemble type with coarse-graining. Together our results reveal substantial trade-offs associated with the process of coarse-graining NMMII ensembles and highlight the robustness of discretized catch-slip ensembles in modeling actomyosin networks.STATEMENT OF SIGNIFICANCEAgent-based simulations of contractile networks allow us to explore the mechanics of actomyosin contractility, which drives many cell shape changes including cytokinesis, the final step of cell division. Such simulations should be able to predict the mechanics and dynamics of non-muscle contractility, however recent work has highlighted a lack of consensus on how to best model the non-muscle myosin II. These ensembles of approximately 32 motors are the key components responsible for driving contractility. Here, we explored different methods for modeling non-muscle myosin II ensembles within the context of contractile actomyosin networks. We show that the level of coarse-graining and the choice of unbinding model used to model motor unbinding under load indeed has profound effects on contractile network dynamics.


2012 ◽  
Vol 26 (21) ◽  
pp. 1250137
Author(s):  
YUNXIN ZHANG

In living cells, molecular motors convert chemical energy into mechanical work. Its thermodynamic energy efficiency, i.e. the ratio of output mechanical work to input chemical energy, is usually high. However, using two-state models, we found the motion of molecular motors is loosely coupled to the chemical cycle. Only part of the input energy can be converted into mechanical work. Others are dissipated into environment during substeps without contributions to the unidirectional movement.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ping Xie

AbstractKinesin-8 molecular motor can move with superprocessivity on microtubules towards the plus end by hydrolyzing ATP molecules, depolymerizing microtubules. The available single molecule data for yeast kinesin-8 (Kip3) motor showed that its superprocessive movement is frequently interrupted by brief stick–slip motion. Here, a model is presented for the chemomechanical coupling of the kinesin-8 motor. On the basis of the model, the dynamics of Kip3 motor is studied analytically. The analytical results reproduce quantitatively the available single molecule data on velocity without including the slip and that with including the slip versus external load at saturating ATP as well as slipping velocity versus external load at saturating ADP and no ATP. Predicted results on load dependence of stepping ratio at saturating ATP and load dependence of velocity at non-saturating ATP are provided. Similarities and differences between dynamics of kinesin-8 and that of kinesin-1 are discussed.


Author(s):  
P. Ciarletta ◽  
M. Ben Amar ◽  
M. Labouesse

The purpose of this work is to provide a biomechanical model to investigate the interplay between cellular structures and the mechanical force distribution during the elongation process of Caenorhabditis elegans embryos. Epithelial morphogenesis drives the elongation process of an ovoid embryo to become a worm-shaped embryo about four times longer and three times thinner. The overall anatomy of the embryo is modelled in the continuum mechanics framework from the structural organization of the subcellular filaments within epithelial cells. The constitutive relationships consider embryonic cells as homogeneous materials with an active behaviour, determined by the non-muscle myosin II molecular motor, and a passive viscoelastic response, related to the directional properties of the filament network inside cells. The axisymmetric elastic solution at equilibrium is derived by means of the incompressibility conditions, the continuity conditions for the overall embryo deformation and the balance principles for the embryonic cells. A particular analytical solution is proposed from a simplified geometry, demonstrating the mechanical role of the microtubule network within epithelial cells in redistributing the stress from a differential contraction of circumferentially oriented actin filaments. The theoretical predictions of the biomechanical model are discussed within the biological scenario proposed through genetic analysis and pharmacological experiments.


1996 ◽  
Vol 199 (3) ◽  
pp. 613-625
Author(s):  
T Jellema ◽  
W Heitler

The metathoracic fast extensor tibiae (FETi) motor neurone of locusts is unusual amongst insect motor neurones because it makes output connections within the central nervous system as well as in the periphery. It makes excitatory chemical synaptic connections to most if not all of the antagonist flexor tibiae motor neurones. The gain of the FETi-flexor connection is dependent on the peripheral conditions at the time of the FETi spike. This dependency has two aspects. First, sensory input resulting from the extensor muscle contraction can sum with the central excitatory postsynaptic potential (EPSP) to augment its falling phase if the tibia is restrained in the flexed position (initiating a tension-dependent reflex) or is free to extend (initiating a movement-dependent resistance reflex). This effect is thus due to simple postsynaptic summation of the central EPSP with peripheral sensory input. Second, the static tibial position at the time of the FETi spike can change the amplitude of the central EPSP, in the absence of any extensor muscle contraction. The EPSP can be up to 30 % greater in amplitude if FETi spikes with the tibia held flexed rather than extended. The primary sense organ mediating this effect is the femoral chordotonal organ. Evidence is presented suggesting that the mechanism underlying this change in gain may be specifically localised to the FETi-flexor connection, rather than being due to general position-dependent sensory feedback summing with the EPSP. The change in the amplitude of the central EPSP is probably not caused by general postsynaptic summation with tonic sensory input, since a diminution in the amplitude of the central EPSP caused by tibial extension is often accompanied by overall tonic excitation of the flexor motor neurone. Small but significant changes in the peak amplitude of the FETi spike have a positive correlation with changes in the EPSP amplitude, suggesting a likely presynaptic component to the mechanism of gain control. The change in amplitude of the EPSP can alter its effectiveness in producing flexor motor output and, thus, has functional significance. The change serves to augment the effectiveness of the FETi-flexor connection when the tibia is fully flexed, and thus to increase its adaptive advantage during the co-contraction preceding a jump or kick, and to reduce the effectiveness of the connection when the tibia is partially or fully extended, and thus to reduce its potentially maladaptive consequences during voluntary extension movements such as thrusting.


2014 ◽  
Vol 4 (6) ◽  
pp. 20140031 ◽  
Author(s):  
Louis Reese ◽  
Anna Melbinger ◽  
Erwin Frey

The cytoskeleton is regulated by a plethora of enzymes that influence the stability and dynamics of cytoskeletal filaments. How microtubules (MTs) are controlled is of particular importance for mitosis, during which dynamic MTs are responsible for proper segregation of chromosomes. Molecular motors of the kinesin-8 protein family have been shown to depolymerize MTs in a length-dependent manner, and recent experimental and theoretical evidence suggests a possible role for kinesin-8 in the dynamic regulation of MTs. However, so far the detailed molecular mechanisms of how these molecular motors interact with the growing MT tip remain elusive. Here we show that two distinct scenarios for the interactions of kinesin-8 with the MT tip lead to qualitatively different MT dynamics, including accurate length control as well as intermittent dynamics. We give a comprehensive analysis of the regimes where length regulation is possible and characterize how the stationary length depends on the biochemical rates and the bulk concentrations of the various proteins. For a neutral scenario, where MTs grow irrespective of whether the MT tip is occupied by a molecular motor, length regulation is possible only for a narrow range of biochemical rates, and, in particular, limited to small polymerization rates. By contrast, for an inhibition scenario, where the presence of a motor at the MT tip inhibits MT growth, the regime where length regulation is possible is extremely broad and includes high growth rates. These results also apply to situations where a polymerizing enzyme like XMAP215 and kinesin-8 mutually exclude each other from the MT tip. Moreover, we characterize the differences in the stochastic length dynamics between the two scenarios. While for the neutral scenario length is tightly controlled, length dynamics is intermittent for the inhibition scenario and exhibits extended periods of MT growth and shrinkage. On a broader perspective, the set of models established in this work quite generally suggest that mutual exclusion of molecules at the ends of cytoskeletal filaments is an important factor for filament dynamics and regulation.


Sign in / Sign up

Export Citation Format

Share Document