scholarly journals Improved multi-type birth-death phylodynamic inference in BEAST 2

Author(s):  
Jérémie Scire ◽  
Joëlle Barido-Sottani ◽  
Denise Kühnert ◽  
Timothy G. Vaughan ◽  
Tanja Stadler

AbstractThe multi-type birth-death model with sampling is a phylodynamic model which enables quantification of past population dynamics in structured populations, based on phylogenetic trees. The BEAST 2 package bdmm implements an algorithm for numerically computing the probability density of a phylogenetic tree given the population dynamic parameters under this model. In the initial release of bdmm, analyses were limited to trees consisting of up to approximately 250 genetic samples for numerical reasons. We implemented important algorithmic changes to bdmm which dramatically increase the number of genetic samples that can be analyzed, and improve the numerical robustness and efficiency of the calculations. Being able to use bigger datasets leads to improved precision of parameter estimates. Furthermore, we report on several model extensions to bdmm, inspired by properties common to empirical datasets. We apply this improved algorithm to two partly overlapping datasets of Influenza A virus HA sequences sampled around the world, one with 500 samples, the other with only 175, for comparison. We report and compare the global migration patterns and seasonal dynamics inferred from each dataset.AvailabilityThe latest release with our updates, bdmm 0.3.5, is freely available as an open access package of BEAST 2. The source code can be accessed at https://github.com/denisekuehnert/bdmm.

2012 ◽  
Vol 93 (9) ◽  
pp. 1996-2007 ◽  
Author(s):  
Kim B. Westgeest ◽  
Miranda de Graaf ◽  
Mathieu Fourment ◽  
Theo M. Bestebroer ◽  
Ruud van Beek ◽  
...  

Each year, influenza viruses cause epidemics by evading pre-existing humoral immunity through mutations in the major glycoproteins: the haemagglutinin (HA) and the neuraminidase (NA). In 2004, the antigenic evolution of HA of human influenza A (H3N2) viruses was mapped (Smith et al., Science 305, 371–376, 2004) from its introduction in humans in 1968 until 2003. The current study focused on the genetic evolution of NA and compared it with HA using the dataset of Smith and colleagues, updated to the epidemic of the 2009/2010 season. Phylogenetic trees and genetic maps were constructed to visualize the genetic evolution of NA and HA. The results revealed multiple reassortment events over the years. Overall rates of evolutionary change were lower for NA than for HA1 at the nucleotide level. Selection pressures were estimated, revealing an abundance of negatively selected sites and sparse positively selected sites. The differences found between the evolution of NA and HA1 warrant further analysis of the evolution of NA at the phenotypic level, as has been done previously for HA.


Author(s):  
O. Smutko ◽  
L. Radchenko ◽  
A. Mironenko

The aim of the present study was identifying of molecular and genetic changes in hemaglutinin (HA), neuraminidase (NA) and non-structure protein (NS1) genes of pandemic influenza A(H1N1)pdm09 strains, that circulated in Ukraine during 2015-2016 epidemic season. Samples (nasopharyngeal swabs from patients) were analyzed using real-time polymerase chain reaction (RTPCR). Phylogenetic trees were constructed using MEGA 7 software. 3D structures were constructed in Chimera 1.11.2rc software. Viruses were collected in 2015-2016 season fell into genetic group 6B and in two emerging subgroups, 6B.1 and 6B.2 by gene of HA and NA. Subgroups 6B.1 and 6B.2 are defined by the following amino acid substitutions. In the NS1 protein were identified new amino acid substitutions D2E, N48S, and E125D in 2015-2016 epidemic season. Specific changes were observed in HA protein antigenic sites, but viruses saved similarity to vaccine strain. NS1 protein acquired substitution associated with increased virulence of the influenza virus.


2016 ◽  
Author(s):  
Nicholas J. Matzke ◽  
April Wright

AbstractTip-dating methods are becoming popular alternatives to traditional node calibration approaches for building time-scaled phylogenetic trees, but questions remain about their application to empirical datasets. We compared the performance of the most popular methods against a dated tree of fossil Canidae derived from previously published monographs. Using a canid morphology dataset, we performed tip-dating using Beast 2.1.3 and MrBayes 3.2.5. We find that for key nodes (Canis, ~3.2 Ma, Caninae ~11.7 Ma) a non-mechanistic model using a uniform tree prior produces estimates that are unrealistically old (27.5, 38.9 Ma). Mechanistic models (incorporating lineage birth, death, and sampling rates) estimate ages that are closely in line with prior research. We provide a discussion of these two families of models (mechanistic vs. non-mechanistic) and their applicability to fossil datasets.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Sara Lado ◽  
Jean Pierre Elbers ◽  
Angela Doskocil ◽  
Davide Scaglione ◽  
Emiliano Trucchi ◽  
...  

AbstractDromedaries have been essential for the prosperity of civilizations in arid environments and the dispersal of humans, goods and cultures along ancient, cross-continental trading routes. With increasing desertification their importance as livestock species is rising rapidly, but little is known about their genome-wide diversity and demographic history. As previous studies using few nuclear markers found weak phylogeographic structure, here we detected fine-scale population differentiation in dromedaries across Asia and Africa by adopting a genome-wide approach. Global patterns of effective migration rates revealed pathways of dispersal after domestication, following historic caravan routes like the Silk and Incense Roads. Our results show that a Pleistocene bottleneck and Medieval expansions during the rise of the Ottoman empire have shaped genome-wide diversity in modern dromedaries. By understanding subtle population structure we recognize the value of small, locally adapted populations and appeal for securing genomic diversity for a sustainable utilization of this key desert species.


2007 ◽  
Vol 52 (1) ◽  
pp. 124-133 ◽  
Author(s):  
Sucheta Mazumdar

Migration has been a central concern of many areas in the writing of European history, and even more so when dealing with the histories of the white settler colonies of North America, Australia, New Zealand, and South Africa. In contrast, migration overseas constitutes a mere footnote (if it is mentioned at all) in densely populated China and India, where the total number of those who migrated out of the country in the last couple of centuries was a relatively small percentage of those who did not. In his thought-provoking and far-reaching essay, Adam McKeown challenges us to look beyond the normative model of “global” migration that focuses solely on European migration. Through innovative research and the compilation of range of data on China, India, central Asia, Japan, Siberia, south-east Asia that are seldom collated and analyzed together, McKeown demonstrates that Asian migration from the mid-nineteenth to mid-twentieth centuries was comparable in volume to the trans-oceanic migrations from Europe. The term “global” as the theme of McKeown's essay, used as an adjective, evocatively captures the migration patterns and circulations of the modern world. But the concept of global is also the definition of the process underlying the modern economic and political system that through its very logic of reproduction creates unequal and uneven terrains. My comments explore some aspects of this unequal terrain.


2021 ◽  
Author(s):  
Catherine A. A. Beauchemin ◽  
James J. McSharry ◽  
George L. Drusano ◽  
Jack T. Nguyen ◽  
Gregory T. Went ◽  
...  

We analyzed the dynamics of an influenza A/Albany/1/98 (H3N2) viral infection, using a set of mathematical models highlighting the differences between in vivo and in vitro infection. For example, we found that including virion loss due to cell entry was critical for the in vitro model but not for the in vivo model. Experiments were performed on influenza virus-infected MDCK cells in vitro inside a hollow-fiber (HF) system, which was used to continuously deliver the drug amantadine. The HF system captures the dynamics of an influenza infection, and is a controlled environment for producing experimental data which lend themselves well to mathematical modeling. The parameter estimates obtained from fitting our mathematical models to the HF experimental data are consistent with those obtained earlier for a primary infection in a human model. We found that influenza A/Albany/1/98 (H3N2) virions under normal experimental conditions at 37°C rapidly lose infectivity with a half-life of ~ 6.6 ± 0.2 h, and that the lifespan of productively infected MDCK cells is ~ 13 h. Finally, using our models we estimated that the maximum efficacy of amantadine in blocking viral infection is ~ 74%, and showed that this low maximum efficacy is likely due to the rapid development of drug resistance.


2016 ◽  
Author(s):  
Claire D. McWhite ◽  
Austin G. Meyer ◽  
Claus O. Wilke

AbstractClinical influenza A isolates are frequently not sequenced directly. Instead, a majority of these isolates (~70% in 2015) are first subjected to passaging for amplification, most commonly in non-human cell culture. Here, we find that this passaging leaves distinct signals of adaptation in the viral sequences, which can confound evolutionary analyses of the viral sequences. We find distinct patterns of adaptation to Madin-Darby (MDCK) and monkey cell culture absent from unpassaged hemagglutinin sequences. These patterns also dominate pooled datasets not separated by passaging type, and they increase in proportion to the number of passages performed. By contrast, MDCK-SIAT1 passaged sequences seem mostly (but not entirely) free of passaging adaptations. Contrary to previous studies, we find that using only internal branches of the influenza phylogenetic trees is insufficient to correct for passaging artifacts. These artifacts can only be safely avoided by excluding passaged sequences entirely from subsequent analysis. We conclude that future influenza evolutionary analyses should appropriately control for potentially confounding effects of passaging adaptations.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xingfei Gong ◽  
Mingda Hu ◽  
Wei Chen ◽  
Haoyi Yang ◽  
Boqian Wang ◽  
...  

Influenza A virus (IAV) genomes are composed of eight single-stranded RNA segments. Genetic exchange through reassortment of the segmented genomes often endows IAVs with new genetic characteristics, which may affect transmissibility and pathogenicity of the viruses. However, a comprehensive understanding of the reassortment history of IAVs remains lacking. To this end, we assembled 40,296 whole-genome sequences of IAVs for analysis. Using a new clustering method based on Mean Pairwise Distances in the phylogenetic trees, we classified each segment of IAVs into clades. Correspondingly, reassortment events among IAVs were detected by checking the segment clade compositions of related genomes under specific environment factors and time period. We systematically identified 1,927 possible reassortment events of IAVs and constructed their reassortment network. Interestingly, minimum spanning tree of the reassortment network reproved that swine act as an intermediate host in the reassortment history of IAVs between avian species and humans. Moreover, reassortment patterns among related subtypes constructed in this study are consistent with previous studies. Taken together, our genome-wide reassortment analysis of all the IAVs offers an overview of the leaping evolution of the virus and a comprehensive network representing the relationships of IAVs.


2016 ◽  
Author(s):  
F. Débarre

AbstractThe theoretical investigation of how spatial structure affects the evolution of social behavior has mostly been done under the assumption that parent-offspring strategy transmission is perfect, i.e., for genetically transmitted traits, that mutation is very weak or absent. Here, we investigate the evolution of social behavior in structured populations under arbitrary mutation probabilities. We consider populations of fixed size N, structured such that in the absence of selection, all individuals have the same probability of reproducing or dying (neutral reproductive values are the all same). Two types of individuals, A and B, corresponding to two types of social behavior, are competing; the fidelity of strategy transmission from parent to offspring is tuned by a parameter μ. Social interactions have a direct effect on individual fecundities. Under the assumption of small phenotypic differences (implyingweak selection), we provide a formula for the expected frequency of type A individuals in the population, and deduce conditions for the long-term success of one strategy against another. We then illustrate our results with three common life-cycles (Wright-Fisher, Moran Birth-Death and Moran Death-Birth), and specific population structures (graph-structured populations). Qualitatively, we find that some life-cycles (Moran Birth-Death, Wright-Fisher) prevent the evolution of altruistic behavior, confirming previous results obtained with perfect strategy transmission. We also show that computing the expected frequency of altruists on a regular graph may require knowing more than just the graph’s size and degree.


2018 ◽  
Author(s):  
Brice A. J. Sarver ◽  
Matthew W. Pennell ◽  
Joseph W. Brown ◽  
Sara Keeble ◽  
Kayla M. Hardwick ◽  
...  

AbstractComparative methods allow researchers to make inferences about evolutionary processes and patterns from phylogenetic trees. In Bayesian phylogenetics, estimating a phylogeny requires specifying priors on parameters characterizing the branching process and rates of substitution among lineages, in addition to others. However, the effect that the selection of these priors has on the inference of comparative parameters has not been thoroughly investigated. Such uncertainty may systematically bias phylogenetic reconstruction and, subsequently, parameter estimation. Here, we focus on the impact of priors in Bayesian phylogenetic inference and evaluate how they affect the estimation of parameters in macroevolutionary models of lineage diversification. Specifically, we use BEAST to simulate trees under combinations of tree priors and molecular clocks, simulate sequence data, estimate trees, and estimate diversification parameters (e.g., speciation rates and extinction rates) from these trees. When substitution rate heterogeneity is large, parameter estimates deviate substantially from those estimated under the simulation conditions when not captured by an appropriate choice of relaxed molecular clock. However, in general, we find that the choice of tree prior and molecular clock has relatively little impact on the estimation of diversification rates insofar as the sequence data are sufficiently informative and substitution rate heterogeneity among lineages is low-to-moderate.


Sign in / Sign up

Export Citation Format

Share Document