scholarly journals Common and distinct brain activity associated with risky and ambiguous decision-making

2020 ◽  
Author(s):  
Ranjita Poudel ◽  
Michael C. Riedel ◽  
Taylor Salo ◽  
Jessica S. Flannery ◽  
Lauren D. Hill-Bowen ◽  
...  

ABSTRACTTwo often-studied forms of uncertain decision-making (DM) are risky-DM (outcome probabilities known) and ambiguous-DM (outcome probabilities unknown). While DM in general is associated with activation of several brain regions, previous neuroimaging efforts suggest a dissociation between activity linked with risky and ambiguous choices. However, the common and distinct neurobiological correlates associated with risky- and ambiguous-DM, as well as their specificity when compared to perceptual-DM (as a ‘control condition’), remains to be clarified. We conducted multiple meta-analyses on neuroimaging results from 151 studies to characterize common and domain-specific brain activity during risky-, ambiguous-, and perceptual-DM. When considering all DM tasks, convergent activity was observed in brain regions considered to be consituents of the canonical salience, valuation, and executive control networks. When considering subgroups of studies, risky-DM (vs. perceptual-DM) was linked with convergent activity in the striatum and anterior cingulate cortex (ACC), regions associated with reward-related processes (determined by objective functional decoding). When considering ambiguous-DM (vs. perceptual-DM), activity convergence was observed in the lateral prefrontal cortex and insula, regions implicated in affectively-neutral mental processes (e.g., cognitive control and behavioral responding; determined by functional decoding). An exploratory meta-analysis comparing brain activity between substance users and non-users during risky-DM identified reduced convergent activity among users in the striatum, cingulate, and thalamus. Taken together, these findings suggest a dissociation of brain regions linked with risky- and ambiguous-DM reflecting possible differential functionality and highlight brain alterations potentially contributing to poor decision-making in the context of substance use disorders.

Author(s):  
Benedikt Sundermann ◽  
Mona Olde lütke Beverborg ◽  
Bettina Pfleiderer

Information derived from functional magnetic resonance imaging (fMRI) during wakeful rest has been introduced as a candidate diagnostic biomarker in unipolar major depressive disorder (MDD). Multiple reports of resting state fMRI in MDD describe group effects. Such prior knowledge can be adopted to pre-select potentially discriminating features, for example for diagnostic classification models with the aim to improve diagnostic accuracy. Purpose of this analysis was to consolidate spatial information about alterations of spontaneous brain activity in MDD to serve such feature selection and as a secondary aim to improve understanding of disease mechanisms. 32 studies were included in final analyses. Coordinates extracted from the original reports were assigned to two categories based on directionality of findings. Meta-analyses were calculated using the non-additive activation likelihood estimation approach with coordinates organized by subject group to account for non-independent samples. Results were compared with established resting state networks (RSNs) and spatial representations of recently introduced temporally independent functional modes (TFMs) of spontaneous brain activity. Converging evidence revealed a distributed pattern of brain regions with increased or decreased spontaneous activity in MDD. The most distinct finding was hyperactivity/ hyperconnectivity presumably reflecting the interaction of cortical midline structures (posterior default mode network components associated with self-referential processing and the subgenual anterior cingulate cortex) with lateral frontal areas related to externally-directed cognition. One particular TFM seems to better comprehend the findings than classical RSNs. Alterations that can be captured by resting state fMRI show considerable overlap with those identifiable with other neuroimaging modalities though differing in some aspects.


2021 ◽  
Author(s):  
Esther E. Palacios-Barrios ◽  
Jamie L. Hanson ◽  
Kelly R. Barry ◽  
Dustin Albert ◽  
Stuart F. White ◽  
...  

AbstractLower family income during childhood is related to increased rates of adolescent depression, though the specific mechanisms are poorly understood. Evidence suggests that individuals with depression demonstrate hypoactivation in brain regions involved in reward learning and decision-making processes (e.g., portions of the prefrontal cortex). Separately, lower family income has been associated with neural alterations in similar regions. We examined associations between family income, depression, and brain activity during a reward learning and decision-making fMRI task in a sample of adolescents (full n=94; usable n=78; mean age=15.4 years). We identified neural regions representing 1) expected value (EV), the learned subjective value of an object, and 2) prediction error, the difference between EV and the actual outcome received. Regions of interest related to reward learning were examined in connection to childhood family income and parent-reported adolescent depressive symptoms. As hypothesized, lower activity in the subgenual anterior cingulate (sACC) for EV in response to approach stimuli was associated with lower childhood family income, as well as greater symptoms of depression measured one-year after the neuroimaging session. These results are consistent with the hypothesis that lower early family income leads to disruptions in reward and decision-making brain circuitry, which leads to adolescent depression.


2018 ◽  
Vol 52 (1/2) ◽  
pp. 118-146 ◽  
Author(s):  
Marco Hubert ◽  
Mirja Hubert ◽  
Marc Linzmajer ◽  
René Riedl ◽  
Peter Kenning

Purpose The purpose of this study is to examine how consumer personality trait impulsiveness influences trustworthiness evaluations of online-offers with different trust-assuring and trust-reducing elements by measuring the brain activity of consumers. Shoppers with high degrees of impulsiveness are referred to as hedonic shoppers, and those with low degrees are referred to as prudent consumers. Design/methodology/approach To investigate the differences between neural processes in the brains of hedonic and prudent shoppers during the trustworthiness evaluation of online-offers, the present study used functional magnetic resonance imaging (fMRI) and region-of-interest analysis to correlate neural activity patterns with behavioral measures of the study participants. Findings Drawing upon literature reviews on the neural correlates of both trust in online settings and consumer impulsiveness and using an experimental design that links behavioral and fMRI data, the study shows that consumer impulsiveness can exert a significant influence on the evaluation of online-offers. With regard to brain activation, both groups (hedonic and prudent shoppers) exhibit similar neural activation tendencies, but differences exist in the magnitude of activation patterns in brain regions that are closely related to trust and impulsiveness such as the dorsal striatum, anterior cingulate, the dorsolateral prefrontal cortex and the insula cortex. Research limitations/implications The data provide evidence that consumers within the hedonic group evaluate online-offers differently with regard to their trustworthiness compared to the prudent group, and that these differences in evaluation are rooted in neural activation differences in the shoppers’ brains. Practical implications Marketers need to be made aware of the fact that neurological insights can be used for market segmentation, because consumers’ decision-making processes help explain behavioral outcomes (here, trustworthiness evaluations of online-offers). In addition, consumers can learn from an advanced understanding of their brain functions during decision-making and their relation to personal traits such as impulsiveness. Originality/value Considering the importance of trust in online shopping, as well as the fact that personality traits such as impulsiveness influence the purchase process to a high degree, this study is the first to systematically investigate the interplay of online trustworthiness perceptions and differences in consumer impulsiveness with neuroscientific methods.


Author(s):  
Benedikt Sundermann ◽  
Mona Olde lütke Beverborg ◽  
Bettina Pfleiderer

Information derived from functional magnetic resonance imaging (fMRI) during wakeful rest has been introduced as a candidate diagnostic biomarker in unipolar major depressive disorder (MDD). Multiple reports of resting state fMRI in MDD describe group effects. Such prior knowledge can be adopted to pre-select potentially discriminating features, for example for diagnostic classification models with the aim to improve diagnostic accuracy. Purpose of this analysis was to consolidate spatial information about alterations of spontaneous brain activity in MDD to serve such feature selection and as a secondary aim to improve understanding of disease mechanisms. 32 studies were included in final analyses. Coordinates extracted from the original reports were assigned to two categories based on directionality of findings. Meta-analyses were calculated using the non-additive activation likelihood estimation approach with coordinates organized by subject group to account for non-independent samples. Results were compared with established resting state networks (RSNs) and spatial representations of recently introduced temporally independent functional modes (TFMs) of spontaneous brain activity. Converging evidence revealed a distributed pattern of brain regions with increased or decreased spontaneous activity in MDD. The most distinct finding was hyperactivity/ hyperconnectivity presumably reflecting the interaction of cortical midline structures (posterior default mode network components associated with self-referential processing and the subgenual anterior cingulate cortex) with lateral frontal areas related to externally-directed cognition. One particular TFM seems to better comprehend the findings than classical RSNs. Alterations that can be captured by resting state fMRI show considerable overlap with those identifiable with other neuroimaging modalities though differing in some aspects.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Till F. M. Andlauer ◽  
Thomas W. Mühleisen ◽  
Felix Hoffstaedter ◽  
Alexander Teumer ◽  
Katharina Wittfeld ◽  
...  

AbstractA retrospective meta-analysis of magnetic resonance imaging voxel-based morphometry studies proposed that reduced gray matter volumes in the dorsal anterior cingulate and the left and right anterior insular cortex—areas that constitute hub nodes of the salience network—represent a common substrate for major psychiatric disorders. Here, we investigated the hypothesis that the common substrate serves as an intermediate phenotype to detect genetic risk variants relevant for psychiatric disease. To this end, after a data reduction step, we conducted genome-wide association studies of a combined common substrate measure in four population-based cohorts (n = 2271), followed by meta-analysis and replication in a fifth cohort (n = 865). After correction for covariates, the heritability of the common substrate was estimated at 0.50 (standard error 0.18). The top single-nucleotide polymorphism (SNP) rs17076061 was associated with the common substrate at genome-wide significance and replicated, explaining 1.2% of the common substrate variance. This SNP mapped to a locus on chromosome 5q35.2 harboring genes involved in neuronal development and regeneration. In follow-up analyses, rs17076061 was not robustly associated with psychiatric disease, and no overlap was found between the broader genetic architecture of the common substrate and genetic risk for major depressive disorder, bipolar disorder, or schizophrenia. In conclusion, our study identified that common genetic variation indeed influences the common substrate, but that these variants do not directly translate to increased disease risk. Future studies should investigate gene-by-environment interactions and employ functional imaging to understand how salience network structure translates to psychiatric disorder risk.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Toshio Tsuji ◽  
Fumiya Arikuni ◽  
Takafumi Sasaoka ◽  
Shin Suyama ◽  
Takashi Akiyoshi ◽  
...  

AbstractBrain activity associated with pain perception has been revealed by numerous PET and fMRI studies over the past few decades. These findings helped to establish the concept of the pain matrix, which is the distributed brain networks that demonstrate pain-specific cortical activities. We previously found that peripheral arterial stiffness $${\beta }_{\text{art}}$$ β art responds to pain intensity, which is estimated from electrocardiography, continuous sphygmomanometer, and photo-plethysmography. However, it remains unclear whether and to what extent $${\beta }_{\text{art}}$$ β art aligns with pain matrix brain activity. In this fMRI study, 22 participants received different intensities of pain stimuli. We identified brain regions in which the blood oxygen level-dependent signal covaried with $${\beta }_{\text{art}}$$ β art using parametric modulation analysis. Among the identified brain regions, the lateral and medial prefrontal cortex and ventral and dorsal anterior cingulate cortex were consistent with the pain matrix. We found moderate correlations between the average activities in these regions and $${\beta }_{\text{art}}$$ β art (r = 0.47, p < 0.001). $${\beta }_{\text{art}}$$ β art was also significantly correlated with self-reported pain intensity (r = 0.44, p < 0.001) and applied pain intensity (r = 0.43, p < 0.001). Our results indicate that $${\beta }_{\text{art}}$$ β art is positively correlated with pain-related brain activity and subjective pain intensity. This study may thus represent a basis for adopting peripheral arterial stiffness as an objective pain evaluation metric.


2010 ◽  
Vol 21 (7) ◽  
pp. 931-937 ◽  
Author(s):  
C. Nathan DeWall ◽  
Geoff MacDonald ◽  
Gregory D. Webster ◽  
Carrie L. Masten ◽  
Roy F. Baumeister ◽  
...  

Pain, whether caused by physical injury or social rejection, is an inevitable part of life. These two types of pain—physical and social—may rely on some of the same behavioral and neural mechanisms that register pain-related affect. To the extent that these pain processes overlap, acetaminophen, a physical pain suppressant that acts through central (rather than peripheral) neural mechanisms, may also reduce behavioral and neural responses to social rejection. In two experiments, participants took acetaminophen or placebo daily for 3 weeks. Doses of acetaminophen reduced reports of social pain on a daily basis (Experiment 1). We used functional magnetic resonance imaging to measure participants’ brain activity (Experiment 2), and found that acetaminophen reduced neural responses to social rejection in brain regions previously associated with distress caused by social pain and the affective component of physical pain (dorsal anterior cingulate cortex, anterior insula). Thus, acetaminophen reduces behavioral and neural responses associated with the pain of social rejection, demonstrating substantial overlap between social and physical pain.


2018 ◽  
Vol 29 (10) ◽  
pp. 4277-4290 ◽  
Author(s):  
Patrick S Hogan ◽  
Joseph K Galaro ◽  
Vikram S Chib

Abstract The perceived effort level of an action shapes everyday decisions. Despite the importance of these perceptions for decision-making, the behavioral and neural representations of the subjective cost of effort are not well understood. While a number of studies have implicated anterior cingulate cortex (ACC) in decisions about effort/reward trade-offs, none have experimentally isolated effort valuation from reward and choice difficulty, a function that is commonly ascribed to this region. We used functional magnetic resonance imaging to monitor brain activity while human participants engaged in uncertain choices for prospective physical effort. Our task was designed to examine effort-based decision-making in the absence of reward and separated from choice difficulty—allowing us to investigate the brain’s role in effort valuation, independent of these other factors. Participants exhibited subjectivity in their decision-making, displaying increased sensitivity to changes in subjective effort as objective effort levels increased. Analysis of blood-oxygenation-level dependent activity revealed that the ventromedial prefrontal cortex (vmPFC) encoded the subjective valuation of prospective effort, and ACC activity was best described by choice difficulty. These results provide insight into the processes responsible for decision-making regarding effort, partly dissociating the roles of vmPFC and ACC in prospective valuation of effort and choice difficulty.


2021 ◽  
Vol 12 ◽  
Author(s):  
Aldo Alberto Conti ◽  
Alexander Mario Baldacchino

Introduction: Impairments in the multifaceted neuropsychological construct of cognitive impulsivity are a main feature of chronic tobacco smokers. According to the literature, these cognitive impairments are relevant for the initiation and maintenance of the smoking behavior. However, the neuroanatomical correlates of cognitive impulsivity in chronic smokers remain under-investigated.Methods: A sample of 28 chronic smokers (mean age = 28 years) not affected by polysubstance dependence and 24 matched non-smoker controls was recruited. Voxel Based Morphometry (VBM) was employed to assess Gray Matter (GM) volume differences between smokers and non-smokers. The relationships between GM volume and behavioral manifestations of impulsive choices (5 trial adjusting delay discounting task, ADT-5) and risky decision making (Cambridge Gambling Task, CGT) were also investigated.Results: VBM results revealed GM volume reductions in cortical and striatal brain regions of chronic smokers compared to non-smokers. Additionally, smokers showed heightened impulsive choices (p &lt; 0.01, Cohen's f = 0.50) and a riskier decision- making process (p &lt; 0.01, Cohen's f = 0.40) compared to non-smokers. GM volume reductions in the left Anterior Cingulate Cortex (ACC) correlated with impaired impulsive and risky choices, while GM volume reductions in the left Ventrolateral Prefrontal Cortex (VLPFC) and Caudate correlated with heightened impulsive choices. Reduced GM volume in the left VLPFC correlated with younger age at smoking initiation (mean = 16 years).Conclusion: Smokers displayed significant GM volume reductions and related cognitive impulsivity impairments compared to non-smoker individuals. Longitudinal studies would be required to assess whether these impairments underline neurocognitive endophenotypes or if they are a consequence of tobacco exposure on the adolescent brain.


2012 ◽  
Vol 24 (8) ◽  
pp. 1742-1752 ◽  
Author(s):  
Bryan T. Denny ◽  
Hedy Kober ◽  
Tor D. Wager ◽  
Kevin N. Ochsner

The distinction between processes used to perceive and understand the self and others has received considerable attention in psychology and neuroscience. Brain findings highlight a role for various regions, in particular the medial PFC (mPFC), in supporting judgments about both the self and others. We performed a meta-analysis of 107 neuroimaging studies of self- and other-related judgments using multilevel kernel density analysis [Kober, H., & Wager, T. D. Meta-analyses of neuroimaging data. Wiley Interdisciplinary Reviews, 1, 293–300, 2010]. We sought to determine what brain regions are reliably involved in each judgment type and, in particular, what the spatial and functional organization of mPFC is with respect to them. Relative to nonmentalizing judgments, both self- and other judgments were associated with activity in mPFC, ranging from ventral to dorsal extents, as well as common activation of the left TPJ and posterior cingulate. A direct comparison between self- and other judgments revealed that ventral mPFC as well as left ventrolateral PFC and left insula were more frequently activated by self-related judgments, whereas dorsal mPFC, in addition to bilateral TPJ and cuneus, was more frequently activated by other-related judgments. Logistic regression analyses revealed that ventral and dorsal mPFC lay at opposite ends of a functional gradient: The z coordinates reported in individual studies predicted whether the study involved self- or other-related judgments, which were associated with increasingly ventral or dorsal portions of mPFC, respectively. These results argue for a distributed rather than localizationist account of mPFC organization and support an emerging view on the functional heterogeneity of mPFC.


Sign in / Sign up

Export Citation Format

Share Document