scholarly journals Comparing DNA replication programs reveals large timing shifts at centromeres of endocycling cells in maize roots

2020 ◽  
Author(s):  
Emily E. Wear ◽  
Jawon Song ◽  
Gregory J. Zynda ◽  
Leigh Mickelson-Young ◽  
Chantal LeBlanc ◽  
...  

ABSTRACTPlant cells undergo two types of cell cycles – the mitotic cycle in which DNA replication is coupled to mitosis, and the endocycle in which DNA replication occurs in the absence of cell division. To investigate DNA replication programs in these two types of cell cycles, we pulse labeled intact root tips of maize (Zea mays) with 5-ethynyl-2’-deoxyuridine (EdU) and used flow sorting of nuclei to examine DNA replication timing (RT) during the transition from a mitotic cycle to an endocycle. Here, we compare sequence-based RT profiles and found that most regions of the maize genome replicate at the same time during S phase in mitotic and endocycling cells, despite the need to replicate twice as much DNA in the endocycle. However, regions collectively corresponding to 2% of the genome displayed significant changes in timing between the two types of cell cycles. The majority of these regions are small, with a median size of 135 kb, and shift to a later RT in the endocycle. However, we found larger regions that shifted RT in centromeres of seven of the ten maize chromosomes. These regions covered the majority of the previously defined functional centromere in each case, which are ∼1–2 Mb in size in the reference genome. They replicate mainly during mid S phase in mitotic cells, but primarily in late S phase of the endocycle. Strikingly, the immediately adjacent pericentromere sequences are primarily late replicating in both cell cycles. Analysis of CENH3 enrichment levels in nuclei of different ploidies suggested that there is only a partial replacement of CENH3 nucleosomes after endocycle replication is complete. The shift to later replication of centromeres and reduced CENH3 enrichment after endocycle replication is consistent with the hypothesis that centromeres are being inactivated as their function is no longer needed.AUTHOR SUMMARYIn traditional cell division, or mitosis, a cell’s genetic material is duplicated and then split between two daughter cells. In contrast, in some specialized cell types, the DNA is duplicated a second time without an intervening division step, resulting in cells that carry twice as much DNA – a phenomenon called an endocycle, which is common during plant development. At each step, DNA replication follows an ordered program, in which highly compacted DNA is unraveled and replicated in sections at different times during the synthesis (S) phase. In plants, it is unclear whether traditional and endocycle programs are the same. Using root tips of maize, we found a small portion of the genome whose replication in the endocycle is shifted in time, usually to later in S phase. Some of these regions are scattered around the genome, and mostly coincide with active genes. However, the most prominent shifts occur in centromeres. This location is noteworthy because centromeres orchestrate the process of separating duplicated chromosomes into daughter cells, a function that is not needed in the endocycle. Our observation that centromeres replicate later in the endocycle suggests there is an important link between the time of replication and the function of centromeres.

BIOspektrum ◽  
2021 ◽  
Vol 27 (3) ◽  
pp. 246-249
Author(s):  
Elisabeth Kruse ◽  
Stephan Hamperl

AbstractTimely and accurate duplication of DNA prior to cell division is a prerequisite for propagation of the genetic material to both daughter cells. DNA synthesis initiates at discrete sites, termed replication origins, and proceeds in a bidirectional manner until all genomic DNA is replicated. Despite the fundamental nature of these events, a uniform method that identifies origins of replication in a comprehensive manner is still missing. Here, we present currently available and discuss new approaches to map replication origins in mammalian genomes.


1979 ◽  
Vol 81 (1) ◽  
pp. 123-136 ◽  
Author(s):  
N Agabian ◽  
M Evinger ◽  
G Parker

An essential event in developmental processes is the introduction of asymmetry into an otherwise undifferentiated cell population. Cell division in Caulobacter is asymmetric; the progeny cells are structurally different and follow different sequences of development, thus providing a useful model system for the study of differentiation. Because the progeny cells are different from one another, there must be a segregation of morphogenetic and informational components at some time in the cell cycle. We have examined the pattern of specific protein segregation between Caulobacter stalked and swarmer daughter cells, with the rationale that such a progeny analysis would identify both structurally and developmentally important proteins. To complement the study, we have also examined the pattern of protein synthesis during synchronous growth and in various cellular fractions. We show here, for the first time, that the association of proteins with a specific cell type may result not only from their periodicity of synthesis, but also from their pattern of distribution at the time of cell division. Several membrane-associated and soluble proteins are segregated asymmetrically between progeny stalked and swarmer cells. The data further show that a subclass of soluble proteins becomes associated with the membrane of the progeny stalked cells. Therefore, although the principal differentiated cell types possess different synthetic capabilities and characteristic proteins, the asymmetry between progeny stalked and swarmer cells is generated primarily by the preferential association of specific soluble proteins with the membrane of only one daughter cell. The majority of the proteins which exhibit this segregation behavior are synthesized during the entire cell cycle and exhibit relatively long, functional messenger RNA half-lives.


2020 ◽  
Author(s):  
Christophe de La Roche Saint-André ◽  
Vincent Géli

AbstractDNA replication is a highly regulated process that occurs in the context of chromatin structure and is sensitive to several histone post-translational modifications. In Saccharomyces cerevisiae, the histone methylase Set1 is responsible for the transcription-dependent deposition of H3K4 methylation (H3K4me) throughout the genome. Here we show that a combination of a hypomorphic replication mutation (orc5-1) with the absence of Set1 (set1Δ) compromises the progression through S phase, and this is associated with a large increase in DNA damage. The ensuing DNA damage checkpoint activation, in addition to that of the spindle assembly checkpoint, restricts the growth of orc5-1 set1Δ. Interestingly, orc5-1 set1Δ is sensitive to the lack of RNase H activity while a reduction of histone levels is able to counterbalance the loss of Set1. We propose that the recently described Set1-dependent mitigation of transcription-replication conflicts becomes critical for growth when the replication forks accelerate due to decreased origin firing in the orc5-1 background. Furthermore, we show that an increase of reactive oxygen species (ROS) levels, likely a consequence of the elevated DNA damage, is partly responsible for the lethality in orc5-1 set1Δ.Author summaryDNA replication, that ensures the duplication of the genetic material, starts at discrete sites, termed origins, before proceeding at replication forks whose progression is carefully controlled in order to avoid conflicts with the transcription of genes. In eukaryotes, DNA replication occurs in the context of chromatin, a structure in which DNA is wrapped around proteins, called histones, that are subjected to various chemical modifications. Among them, the methylation of the lysine 4 of histone H3 (H3K4) is carried out by Set1 in Saccharomyces cerevisiae, specifically at transcribed genes. We report that, when the replication fork accelerates in response to a reduction of active origins, the absence of Set1 leads to accumulation of DNA damage. Because H3K4 methylation was recently shown to slow down replication at transcribed genes, we propose that the Set1-dependent becomes crucial to limit the occurrence of conflicts between replication and transcription caused by replication fork acceleration. In agreement with this model, stabilization of transcription-dependent structures or reduction histone levels, to limit replication fork velocity, respectively exacerbates or moderates the effect of Set1 loss. Last, but not least, we show that the oxidative stress associated to DNA damage is partly responsible for cell lethality.


Author(s):  
Caroline S. Simon ◽  
Vanessa S. Stürmer ◽  
Julien Guizetti

Regulating the number of progeny generated by replicative cell cycles is critical for any organism to best adapt to its environment. Classically, the decision whether to divide further is made after cell division is completed by cytokinesis and can be triggered by intrinsic or extrinsic factors. Contrarily, cell cycles of some species, such as the malaria-causing parasites, go through multinucleated cell stages. Hence, their number of progeny is determined prior to the completion of cell division. This should fundamentally affect how the process is regulated and raises questions about advantages and challenges of multinucleation in eukaryotes. Throughout their life cycle Plasmodium spp. parasites undergo four phases of extensive proliferation, which differ over three orders of magnitude in the amount of daughter cells that are produced by a single progenitor. Even during the asexual blood stage proliferation parasites can produce very variable numbers of progeny within one replicative cycle. Here, we review the few factors that have been shown to affect those numbers. We further provide a comparative quantification of merozoite numbers in several P. knowlesi and P. falciparum parasite strains, and we discuss the general processes that may regulate progeny number in the context of host-parasite interactions. Finally, we provide a perspective of the critical knowledge gaps hindering our understanding of the molecular mechanisms underlying this exciting and atypical mode of parasite multiplication.


2017 ◽  
Vol 29 (9) ◽  
pp. 2126-2149 ◽  
Author(s):  
Emily E. Wear ◽  
Jawon Song ◽  
Gregory J. Zynda ◽  
Chantal LeBlanc ◽  
Tae-Jin Lee ◽  
...  

1969 ◽  
Vol 24 (12) ◽  
pp. 1624-1629 ◽  
Author(s):  
Günter Cleffmann

Actinomycin in low concentration (0,2 μg/ml — 0,5 μg/ml) prolongs the average duration of the cell cycle of Tetrahymena considerably, but does not inhibit cell division completely. Some parameters of the growing cell have been tested in cell cycles extended in this way and compared to those of normally growing cells. The RNA synthesis of treated cells is reduced to such an extent that the RNA content per cell decreases during the prolonged cell cycle. Nevertheless cell growth, protein synthesis and DNA replication proceed at almost the same rate as in untreated cells. These findings indicate that the presence of actinomycin does not interfere with RNA fractions necessary for growth but reduce the synthesis of RNA fractions which are essential for cell division. Therefore a longer period is needed for their accumulation.


2000 ◽  
Vol 20 (20) ◽  
pp. 7613-7623 ◽  
Author(s):  
Claus Storgaard Sørensen ◽  
Claudia Lukas ◽  
Edgar R. Kramer ◽  
Jan-Michael Peters ◽  
Jiri Bartek ◽  
...  

ABSTRACT Ubiquitin-proteasome-mediated destruction of rate-limiting proteins is required for timely progression through the main cell cycle transitions. The anaphase-promoting complex (APC), periodically activated by the Cdh1 subunit, represents one of the major cellular ubiquitin ligases which, in Saccharomyces cerevisiae andDrosophila spp., triggers exit from mitosis and during G1 prevents unscheduled DNA replication. In this study we investigated the importance of periodic oscillation of the APC-Cdh1 activity for the cell cycle progression in human cells. We show that conditional interference with the APC-Cdh1 dissociation at the G1/S transition resulted in an inability to accumulate a surprisingly broad range of critical mitotic regulators including cyclin B1, cyclin A, Plk1, Pds1, mitosin (CENP-F), Aim1, and Cdc20. Unexpectedly, although constitutively assembled APC-Cdh1 also delayed G1/S transition and lowered the rate of DNA synthesis during S phase, some of the activities essential for DNA replication became markedly amplified, mainly due to a progressive increase of E2F-dependent cyclin E transcription and a rapid turnover of the p27Kip1 cyclin-dependent kinase inhibitor. Consequently, failure to inactivate APC-Cdh1 beyond the G1/S transition not only inhibited productive cell division but also supported slow but uninterrupted DNA replication, precluding S-phase exit and causing massive overreplication of the genome. Our data suggest that timely oscillation of the APC-Cdh1 ubiquitin ligase activity represents an essential step in coordinating DNA replication with cell division and that failure of mechanisms regulating association of APC with the Cdh1 activating subunit can undermine genomic stability in mammalian cells.


2021 ◽  
Vol 220 (8) ◽  
Author(s):  
Yilin Fan ◽  
Marielle S. Köberlin ◽  
Nalin Ratnayeke ◽  
Chad Liu ◽  
Madhura Deshpande ◽  
...  

After two converging DNA replication forks meet, active replisomes are disassembled and unloaded from chromatin. A key process in replisome disassembly is the unloading of CMG helicases (CDC45–MCM–GINS), which is initiated in Caenorhabditis elegans and Xenopus laevis by the E3 ubiquitin ligase CRL2LRR1. Here, we show that human cells lacking LRR1 fail to unload CMG helicases and accumulate increasing amounts of chromatin-bound replisome components as cells progress through S phase. Markedly, we demonstrate that the failure to disassemble replisomes reduces the rate of DNA replication increasingly throughout S phase by sequestering rate-limiting replisome components on chromatin and blocking their recycling. Continued binding of CMG helicases to chromatin during G2 phase blocks mitosis by activating an ATR-mediated G2/M checkpoint. Finally, we provide evidence that LRR1 is an essential gene for human cell division, suggesting that CRL2LRR1 enzyme activity is required for the proliferation of cancer cells and is thus a potential target for cancer therapy.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 271 ◽  
Author(s):  
Roberta Fraschini

The duplication cycle is the fascinating process that, starting from a cell, results in the formation of two daughter cells and it is essential for life. Cytokinesis is the final step of the cell cycle, it is a very complex phase, and is a concert of forces, remodeling, trafficking, and cell signaling. All of the steps of cell division must be properly coordinated with each other to faithfully segregate the genetic material and this task is fundamental for generating viable cells. Given the importance of this process, molecular pathways and proteins that are involved in cytokinesis are conserved from yeast to humans. In this review, we describe symmetric and asymmetric cell division in animal cell and in a model organism, budding yeast. In addition, we illustrate the surveillance mechanisms that ensure a proper cell division and discuss the connections with normal cell proliferation and organs development and with the occurrence of human diseases.


1994 ◽  
Vol 107 (1) ◽  
pp. 253-265 ◽  
Author(s):  
I.T. Todorov ◽  
R. Pepperkok ◽  
R.N. Philipova ◽  
S.E. Kearsey ◽  
W. Ansorge ◽  
...  

Molecular cloning and characterisation of a human nuclear protein designated BM28 is reported. On the amino acid level this 892 amino acid protein, migrating on SDS-gels as a 125 kDa polypeptide, shares areas of significant similarity with a recently defined family of early S phase proteins. The members of this family, the Saccharomyces cerevisiae Mcm2p, Mcm3p, Cdc46p/Mcm5p, the Schizosaccharomyces pombe Cdc21p and the mouse protein P1 are considered to be involved in the onset of DNA replication. The highest similarity was found with Mcm2p (42% identity over the whole length and higher than 75% over a conservative region of 215 amino acid residues), suggesting that BM28 could represent the human homologue of the S. cerevisiae MCM2. Using antibodies raised against the recombinant BM28 the corresponding antigen was found to be localised in the nuclei of various mammalian cells. Microinjection of anti-BM28 antibody into synchronised mouse NIH3T3 or human HeLa cells presents evidence for the involvement of the protein in cell cycle progression. When injected in G1 phase the anti-BM28 antibody inhibits the onset of subsequent DNA synthesis as tested by the incorporation of bromodeoxyuridine. Microinjection during the S phase had no effect on DNA synthesis, but inhibits cell division. The data suggest that the nuclear protein BM28 is required for two events of the cell cycle, for the onset of DNA replication and for cell division.


Sign in / Sign up

Export Citation Format

Share Document