scholarly journals JAK Inhibitors Suppress Colon Cancer Cachexia-Associated Anorexia and Adipose Wasting in Mice

2020 ◽  
Author(s):  
Gurpreet Arora ◽  
Arun Gupta ◽  
Tong Guo ◽  
Aakash Gandhi ◽  
Aaron Laine ◽  
...  

ABSTRACTBackgroundCachexia (CX), a syndrome of muscle atrophy, adipose loss, and anorexia, is associated with reduced survival in cancer patients. The colon adenocarcinoma C26c20 cell line secretes the cytokine leukemia inhibitor factor (LIF) which induces CX. We characterized how LIF promotes CX-associated weight loss and anorexia in mice through JAK-dependent changes in adipose and hypothalamic tissues.MethodsCX was induced in vivo with C26c20 colon adenocarcinoma cells or recombinant LIF administration in the absence or presence of JAK inhibitors. Blood, adipose, and hypothalamic tissues were collected and processed for cyto/adipokine ELISAs, immunoblot analysis, and quantitative RT-PCR. CX was induced in vitro by stimulating differentiated adipocytes with recombinant LIF or IL-6 in the absence or presence of lipase or JAK inhibitors. These activated adipocytes were processed for lipolysis, immunoblot analysis, and RT-PCR.ResultsTumor-secreted LIF induced changes in adipose tissue expression and serum levels of IL-6 and leptin in a JAK-dependent manner influencing CX-associated adipose wasting and anorexia. We identified two JAK inhibitors that block cytokine-mediated adipocyte lipolysis and IL-6 induction using an in vitro CX lipolysis assay. JAK inhibitors administered to in vivo colon cancer CX mouse models led to 1) a decrease in STAT3 phosphorylation in hypothalamic and adipose tissues, 2) a reverse in the CX serum cyto/adipokine signature, 3) a delay in colon cancer CX-associated anorexia and adipose loss, and 4) an improvement in overall survival.ConclusionsJAK inhibitors suppress cytokine-associated adipose loss and anorexia in multiple in vitro and in vivo models of cancer CX.

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Dezhong Wang ◽  
Yuan Yin ◽  
Shuyi Wang ◽  
Tianyang Zhao ◽  
Fanghua Gong ◽  
...  

AbstractAs a classically known mitogen, fibroblast growth factor 1 (FGF1) has been found to exert other pleiotropic functions such as metabolic regulation and myocardial protection. Here, we show that serum levels of FGF1 were decreased and positively correlated with fraction shortening in diabetic cardiomyopathy (DCM) patients, indicating that FGF1 is a potential therapeutic target for DCM. We found that treatment with a FGF1 variant (FGF1∆HBS) with reduced proliferative potency prevented diabetes-induced cardiac injury and remodeling and restored cardiac function. RNA-Seq results obtained from the cardiac tissues of db/db mice showed significant increase in the expression levels of anti-oxidative genes and decrease of Nur77 by FGF1∆HBS treatment. Both in vivo and in vitro studies indicate that FGF1∆HBS exerted these beneficial effects by markedly reducing mitochondrial fragmentation, reactive oxygen species (ROS) generation and cytochrome c leakage and enhancing mitochondrial respiration rate and β-oxidation in a 5’ AMP-activated protein kinase (AMPK)/Nur77-dependent manner, all of which were not observed in the AMPK null mice. The favorable metabolic activity and reduced proliferative properties of FGF1∆HBS testify to its promising potential for use in the treatment of DCM and other metabolic disorders.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 106
Author(s):  
Yeongji Yu ◽  
Hyejin Kim ◽  
SeokGyeong Choi ◽  
JinSuh Yu ◽  
Joo Yeon Lee ◽  
...  

The elimination of the cancer stem cell (CSC) population may be required to achieve better outcomes of cancer therapy. We evaluated stearoyl-CoA desaturase 1 (SCD1) as a novel target for CSC-selective elimination in colon cancer. CSCs expressed more SCD1 than bulk cultured cells (BCCs), and blocking SCD1 expression or function revealed an essential role for SCD1 in the survival of CSCs, but not BCCs. The CSC potential selectively decreased after treatment with the SCD1 inhibitor in vitro and in vivo. The CSC-selective suppression was mediated through the induction of apoptosis. The mechanism leading to selective CSC death was investigated by performing a quantitative RT-PCR analysis of 14 CSC-specific signaling and marker genes after 24 and 48 h of treatment with two concentrations of an inhibitor. The decrease in the expression of Notch1 and AXIN2 preceded changes in the expression of all other genes, at 24 h of treatment in a dose-dependent manner, followed by the downregulation of most Wnt- and NOTCH-signaling genes. Collectively, we showed that not only Wnt but also NOTCH signaling is a primary target of suppression by SCD1 inhibition in CSCs, suggesting the possibility of targeting SCD1 against colon cancer in clinical settings.


1994 ◽  
Vol 14 (8) ◽  
pp. 5360-5370 ◽  
Author(s):  
M E Kraus ◽  
J T Lis

B52 is a Drosophila melanogaster protein that plays a role in general and alternative splicing in vitro. It is homologous to the human splicing factor ASF/SF2 which is essential for an early step(s) in spliceosome assembly in vitro and also regulates 5' and 3' alternative splice site choice in a concentration-dependent manner. In vitro, B52 can function as both a general splicing factor and a regulator of 5' alternative splice site choice. Its activity in vivo, however, is largely uncharacterized. In this study, we have further characterized B52 in vivo. Using Western blot (immunoblot) analysis and whole-mount immunofluorescence, we demonstrate that B52 is widely expressed throughout development, although some developmental stages and tissues appear to have higher B52 levels than others do. In particular, B52 accumulates in ovaries, where it is packaged into the developing egg and is localized to nuclei by the late blastoderm stage of embryonic development. We also overexpressed this protein in transgenic flies in a variety of developmental and tissue-specific patterns to examine the effects of altering the concentration of this splicing factor in vivo. We show that, in many cell types, changing the concentration of B52 adversely affects the development of the organism. We discuss the significance of these observations with regard to previous in vitro results.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 59
Author(s):  
Yeon-Seop Jung ◽  
So-Hee Lee ◽  
So Young Chun ◽  
Dae Hwan Kim ◽  
Byung Ik Jang ◽  
...  

Excessive oxidative stress plays a role in hepatotoxicity and the pathogenesis of hepatic diseases. In our previous study, the phenolic extract of beluga lentil (BLE) showed the most potent in vitro antioxidant activity among extracts of four common varieties of lentils; thus, we hypothesized that BLE might protect liver cells against oxidative stress-induced cytotoxicity. BLE was evaluated for its protective effects against oxidative stress-induced hepatotoxicity in AML12 mouse hepatocytes and BALB/c mice. H2O2 treatment caused a marked decrease in cell viability; however, pretreatment with BLE (25–100 μg/mL) for 24 h significantly preserved the viability of H2O2-treated cells up to about 50% at 100 μg/mL. As expected, BLE dramatically reduced intracellular reactive oxygen species (ROS) levels in a dose-dependent manner in H2O2-treated cells. Further mechanistic studies demonstrated that BLE reduced cellular ROS levels, partly by increasing expression of antioxidant genes. Furthermore, pretreatment with BLE (400 mg/kg) for 2 weeks significantly reduced serum levels of alanine transaminase and triglyceride by about 49% and 40%, respectively, and increased the expression and activity of glutathione peroxidase in CCl4-treated BALB/c mice. These results suggest that BLE protects liver cells against oxidative stress, partly by inducing cellular antioxidant system; thus, it represents a potential source of nutraceuticals with hepatoprotective effects.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Tao-Tao Yue ◽  
Nan Zhang ◽  
Jian-Hua Li ◽  
Xiang-Yun Lu ◽  
Xiao-Cen Wang ◽  
...  

Abstract Background Trichinella spiralis (T. spiralis) is a parasite occurring worldwide that has been proven to have antitumour ability. However, studies on the antitumour effects of cross antigens between the tumour and T. spiralis or antibodies against cross antigens between tumours and T. spiralis are rare. Methods To study the role of cross antigens between osteosarcoma and T. spiralis, we first screened the cDNA expression library of T. spiralis muscle larvae to obtain the cross antigen gene tumour protein D52 (TPD52), and prepared fusion protein TPD52 and its antiserum. The anti-osteosarcoma effect of the anti-TPD52 antiserum was studied using cell proliferation and cytotoxicity assays as well as in vivo animal models; preliminary data on the mechanism were obtained using western blot and immunohistochemistry analyses. Results Our results indicated that TPD52 was mainly localized in the cytoplasm of MG-63 cells. Anti-TPD52 antiserum inhibited the proliferation of MG-63 cells and the growth of osteosarcoma in a dose-dependent manner. The tumour inhibition rate in the 100 μg treatment group was 61.95%. Enzyme-linked immunosorbent assay showed that injection of anti-TPD52 antiserum increased the serum levels of IFN-γ, TNF-α, and IL-12 in nude mice. Haematoxylin and eosin staining showed that anti-TPD52 antiserum did not cause significant pathological damage. Apoptosis of osteosarcoma cells was induced by anti-TPD52 antiserum in vivo and in vitro. Conclusions Anti-TPD52 antiserum exerts an anti-osteosarcoma effect by inducing apoptosis without causing histopathological damage. Graphical abstract


2021 ◽  
Author(s):  
Songjia Guo ◽  
Shuhua Shan ◽  
Haili Wu ◽  
huiqiang hao ◽  
Zhuoyu Li

Abstract Nostoc commune Vauch is a nitrogen-fixing blue-green algae, contains a large number of active molecules with medicinal functions. Our previous study found that a water stress protein (WSP1) from Nostoc commune Vauch and its the recombinant protein (Re-WSP1) exhibited significant anti-colon cancer (CRC) activity both in vitro and in vivo. However, the underlying mechanism remains unknown. In this study, the CCK8 and clonogenic assays showed that Re-WSP1 restrained the colon cancer growth in a dose-dependent manner. Mechanistically, Re-WSP1 inhibited the expression of β-catenin, which was partly reversed by LiCl treatment, demonstrating a key role in Re-WSP1-induced inhibition of cell growth. Quantitative PCR analysis showed that the expression of microRNA-539 (miR-539) was significantly up-regulated upon Re-WSP1 treatment. Moreover, miR-539 negatively regulateed the expression of β-catenin through directly binds to the 3’UTR of β-catenin mRNA. Taken together, our data demonstrate that Re-WSP1 suppresses the CRC growth via miR-539/β-catenin axis, which provides new insights into the molecular mechanisms underlying Re-WSP1 against CRC.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuki Kuwano ◽  
Kensei Nishida ◽  
Kazuhito Rokutan

AbstractUltraconserved regions (UCRs) are 481 genomic sequences with 100% identity across humans, rats, and mice. Increasing evidence suggests that non-coding RNAs transcribed from UCRs are involved in various diseases, especially cancers. The human transformer 2β gene (TRA2B) encodes a UCR (uc.138) that spans exon 2 and its neighboring introns. TRA2B4 RNA is the only transcript that contains the whole exon 2 among five spliced TRA2B RNA variants (TRA2B1-5). TRA2B4 is upregulated in colon cancer cell lines, although it is not translated to Tra2β protein because of its nuclear retention. Nevertheless, the clinical significance and biological functions of uc.138 in colon cancer cells remain unclear. In this study, RNA in situ hybridization showed that TRA2B4 was predominantly overexpressed in the nucleus of colon adenocarcinoma and adenoma. Overexpression of TRA2B4 in colon cancer HCT116 cells promoted cell proliferation by changing the expression of G2/M-related cell cycle regulators. Moreover, TRA2B4 increased migration and cell viability in a uc.138 sequence-dependent manner. TRA2B4 significantly enhanced tumorigenesis in vivo. Taken together, uc.138 encoded in TRA2B4 plays an oncogenic role in tumor progression and may become a potential biomarker and therapeutic target in colon cancer.


2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Ali R. Nasiri ◽  
Marcos R. Rodrigues ◽  
Zongyu Li ◽  
Brooks P. Leitner ◽  
Rachel J. Perry

Abstract Background Obesity confers an increased risk and accelerates the progression of multiple tumor types in rodents and humans, including both breast and colon cancer. Because sustained weight loss is rarely achieved, therapeutic approaches to slow or prevent obesity-associated cancer development have been limited, and mechanistic insights as to the obesity-cancer connection have been lacking. Methods E0771 breast tumors and MC38 colon tumors were treated in vivo in mice and in vitro with two mechanistically different insulin-lowering agents, a controlled-release mitochondrial protonophore (CRMP) and sodium-glucose cotransporter-2 (SGLT2) inhibitors, and tumor growth and glucose metabolism were assessed. Groups were compared by ANOVA with Bonferroni’s multiple comparisons test. Results Dapagliflozin slows tumor growth in two mouse models (E0771 breast cancer and MC38 colon adenocarcinoma) of obesity-associated cancers in vivo, and a mechanistically different insulin-lowering agent, CRMP, also slowed breast tumor growth through its effect to reverse hyperinsulinemia. In both models and with both agents, tumor glucose uptake and oxidation were not constitutively high, but were hormone-responsive. Restoration of hyperinsulinemia by subcutaneous insulin infusion abrogated the effects of both dapagliflozin and CRMP to slow tumor growth. Conclusions Taken together, these data demonstrate that hyperinsulinemia per se promotes both breast and colon cancer progression in obese mice, and highlight SGLT2 inhibitors as a clinically available means of slowing obesity-associated tumor growth due to their glucose- and insulin-lowering effects.


Biomedicines ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 562
Author(s):  
Noelia Silva-Pilipich ◽  
Eva Martisova ◽  
María Cristina Ballesteros-Briones ◽  
Sandra Hervas-Stubbs ◽  
Noelia Casares ◽  
...  

Immune checkpoint blockade using monoclonal antibodies (mAbs) able to block programmed death-1 (PD-1)/PD-L1 axis represents a promising treatment for cancer. However, it requires repetitive systemic administration of high mAbs doses, often leading to adverse effects. We generated a novel nanobody against PD-1 (Nb11) able to block PD-1/PD-L1 interaction for both mouse and human molecules. Nb11 was cloned into an adeno-associated virus (AAV) vector downstream of four different promoters (CMV, CAG, EF1α, and SFFV) and its expression was analyzed in cells from rodent (BHK) and human origin (Huh-7). Nb11 was expressed at high levels in vitro reaching 2–20 micrograms/mL with all promoters, except SFFV, which showed lower levels. Nb11 in vivo expression was evaluated in C57BL/6 mice after intravenous administration of AAV8 vectors. Nb11 serum levels increased steadily along time, reaching 1–3 microgram/mL two months post-treatment with the vector having the CAG promoter (AAV-CAG-Nb11), without evidence of toxicity. To test the antitumor potential of this vector, mice that received AAV-CAG-Nb11, or saline as control, were challenged with colon adenocarcinoma cells (MC38). AAV-CAG-Nb11 treatment prevented tumor formation in 30% of mice, significantly increasing survival. These data suggest that continuous expression of immunomodulatory nanobodies from long-term expression vectors could have antitumor effects with low toxicity.


2010 ◽  
Vol 207 (2) ◽  
pp. 345-352 ◽  
Author(s):  
Daniel P. Sieveking ◽  
Patrick Lim ◽  
Renée W.Y. Chow ◽  
Louise L. Dunn ◽  
Shisan Bao ◽  
...  

Mounting evidence suggests that in men, serum levels of testosterone are negatively correlated to cardiovascular and all-cause mortality. We studied the role of androgens in angiogenesis, a process critical in cardiovascular repair/regeneration, in males and females. Androgen exposure augmented key angiogenic events in vitro. Strikingly, this occurred in male but not female endothelial cells (ECs). Androgen receptor (AR) antagonism or gene knockdown abrogated these effects in male ECs. Overexpression of AR in female ECs conferred androgen sensitivity with respect to angiogenesis. In vivo, castration dramatically reduced neovascularization of Matrigel plugs. Androgen treatment fully reversed this effect in male mice but had no effect in female mice. Furthermore, orchidectomy impaired blood-flow recovery from hindlimb ischemia, a finding rescued by androgen treatment. Our findings suggest that endogenous androgens modulate angiogenesis in a sex-dependent manner, with implications for the role of androgen replacement in men.


Sign in / Sign up

Export Citation Format

Share Document