scholarly journals Single cell mutational profiling delineates clonal trajectories in myeloid malignancies

Author(s):  
Linde A. Miles ◽  
Robert L. Bowman ◽  
Tiffany R. Merlinsky ◽  
Isabelle S. Csete ◽  
Aik Ooi ◽  
...  

SummaryMyeloid malignancies, including acute myeloid leukemia (AML), arise from the proliferation and expansion of hematopoietic stem and progenitor cells which acquire somatic mutations. Bulk molecular profiling studies on patient samples have suggested that somatic mutations are obtained in a step-wise fashion, where mutant genes with high variant allele frequencies (VAFs) are proposed to occur early in disease development and mutations with lower VAFs are thought to be acquired later in disease progression1–3. Although bulk sequencing informs leukemia biology and prognostication, it cannot distinguish which mutations occur in the same clone(s), accurately measure clonal complexity and clone size, or offer definitive evidence of mutational order. To elucidate the clonal framework of myeloid malignancies, we performed single cell mutational profiling on 146 samples from 123 patients. We found AML is most commonly comprised of a small number of dominant clones, which in many cases harbor co-occurring mutations in epigenetic regulators. Conversely, mutations in signaling genes often occur more than once in distinct subclones consistent with increasing clonal diversity. We also used these data to map the clonal trajectory of each patient and found that specific mutation combinations (FLT3-ITD + NPM1c) synergize to promote clonal expansion and dominance. We combined cell surface protein expression with single cell mutational analysis to map somatic genotype and clonal architecture with immunophenotype. Our studies of clonal architecture at a single cell level provide novel insights into the pathogenesis of myeloid transformation and how clonal complexity contributes to disease progression.

Author(s):  
Robert R West ◽  
Katherine R Calvo ◽  
Lisa J Embree ◽  
Weixin Wang ◽  
Laura M Tuschong ◽  
...  

GATA2 Deficiency patients harbor de novo or inherited germline mutations in the GATA2 transcription factor gene, predisposing them to myeloid malignancies. There is considerable variation in disease progression, even among family members with the same mutation in GATA2. We investigated somatic mutations in 106 patients with GATA2 Deficiency to identify acquired mutations that are associated with myeloid malignancies. Myelodysplastic Syndrome (MDS) was the most common diagnosis (~44%), followed by GATA2 bone marrow immunodeficiency disorder (G2BMID) (~37%). Thirteen percent of the cohort had GATA2 mutations but displayed no disease manifestations. There were no correlations between patient age or sex with disease progression or survival. Cytogenetic analyses showed a high incidence of abnormalities (~43%)- notably trisomy 8 (~23%) and monosomy 7 (~12%), but these changes did not correlate with lower survival. Somatic mutations in ASXL1 and STAG2 were detected in ~25% of patients, though these mutations were rarely concomitant. Mutations in DNMT3A were found in ~10% of patients. These somatic mutations were found similarly in G2BMID and MDS, suggesting clonal hematopoiesis in early stages of disease, before the onset of MDS. ASXL1 mutations conferred a lower survival probability and were more prevalent in female patients. STAG2 mutations also conferred a lower survival probability, but did not show a statistically significant sex bias. There was a conspicuous absence of many commonly mutated genes associated with myeloid malignancies, including TET2, IDH1/2, and the splicing factor genes. Notably, somatic mutations in chromatin-related genes and cohesin genes characterized disease progression in GATA2 Deficiency


2020 ◽  
Vol 4 (5) ◽  
pp. 943-952 ◽  
Author(s):  
Asiri Ediriwickrema ◽  
Alexey Aleshin ◽  
Johannes G. Reiter ◽  
M. Ryan Corces ◽  
Thomas Köhnke ◽  
...  

Abstract Although most patients with acute myeloid leukemia (AML) achieve clinical remission with induction chemotherapy, relapse rates remain high. Next-generation sequencing enables minimal/measurable residual disease (MRD) detection; however, clinical significance is limited due to difficulty differentiating between pre-leukemic clonal hematopoiesis and frankly malignant clones. Here, we investigated AML MRD using targeted single-cell sequencing (SCS) at diagnosis, remission, and relapse (n = 10 relapsed, n = 4 nonrelapsed), with a total of 310 737 single cells sequenced. Sequence variants were identified in 80% and 75% of remission samples for patients with and without relapse, respectively. Pre-leukemic clonal hematopoiesis clones were detected in both cohorts, and clones with multiple cooccurring mutations were observed in 50% and 0% of samples. Similar clonal richness was observed at diagnosis in both cohorts; however, decreasing clonal diversity at remission was significantly associated with longer relapse-free survival. These results show the power of SCS in investigating AML MRD and clonal evolution.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 913-913 ◽  
Author(s):  
Linde A Miles ◽  
Robert L Bowman ◽  
Tiffany R Merlinsky ◽  
Aik Ooi ◽  
Pedro Mendez ◽  
...  

Genomic studies of myeloid malignancies (MM), including acute myeloid leukemia (AML), myeloproliferative neoplasms (MPN) and myelodysplasia (MDS), identified mutations with different allele frequencies. Recent studies of clonal hematopoiesis (CH) discovered a subset of MM disease alleles, while other alleles are only observed in overt MM. These observations suggest an important pathogenetic role for the chronology of mutational acquisition. Although bulk sequencing informs prognostication, it cannot distinguish which mutations occur in the same clone and cannot offer definitive evidence of mutational order. Delineation of clonal architecture at the single cell level is key to understanding how the sequential/parallel acquisition of somatic mutations contributes to myeloid transformation. In order to elucidate the clonal structure of MM, we designed a custom single cell 109 amplicon panel of the most frequently mutated amplicons in 50 MM genes using the Mission Bio Tapestri v2 platform. Viable cells were sorted from 90 samples from 78 patients with CH, AML, and MPN/post-MPN AML followed by single cell amplification/sequencing. Mutation calls were filtered based on read depth, quality, and alleles genotyped per cell. We reconstructed a random distribution of clones by permuting genotype calls across cells and generated empirical p values for each clone. To identify dominant clones, we used a Poisson test to determine clones were significantly enriched compared to the mean clone size. Clones with significant p-values (p <0.05) were used to generate plots of clonal architecture of each sample (Figure 1A). Despite significant clonal complexity, the majority of MM patients (80%;72/90) present with one (51/90; 56.7%) or two (21/90; 23.3%) dominant clones. These data show there are specific genotypic combinations which lead to clonal dominance with increased fitness relative to other clones and/or suppression of minor clones by dominant clone(s). We next investigated whether specific molecularly defined AML subtypes had increased clonal complexity. FLT3-ITD mutant AML samples had a significantly greater number of clones (p < 0.002) compared to AML samples with multiple epigenetic modifier mutations. Similar findings were not observed when comparing AML samples with epigenetic mutations to RAS pathway mutant samples. We next investigated whether specific mutations were likely to co-occur/be mutually exclusive at a single cell level. We observed evidence of oligoclonality in CH, including parallel acquisition of DNMT3A mutations and clones with multiple mutations in the absence of progression to MM. By contrast, in MM the dominant clone(s) almost always harbored multiple epigenetic modifier mutations, suggesting cooperative epigenetic remodeling in myeloid transformation. Mutations in signaling effectors (FLT3-ITD/TKD; RAS/RAS) were mutually exclusive. We observed distinct FLT3-mutant clones in FLT3-mutant AML patients and parallel acquisition of different RAS pathway mutations. We used this data to develop clonal architecture trees in each patient, giving us a definitive picture of mutational acquisition and transformation at a single cell level. We calculated a Shannon diversity score and observed an increase in clonal complexity with disease evolution; CH samples had the lowest clonal diversity and FLT3-ITD AML patients the highest clonal diversity (Figure 1B). We extended our findings by combining cell surface marker assessment and single cell mutational analysis. Patient samples were stained with an antibody cocktail of 6 oligo-conjugated antibodies with barcode tags prior to single cell sequencing, which allowed simultaneous acquisition of single cell immunophenotypic and genotypic data. This allows us to identify distinct populations of stem/progenitor cells with distinct clonal/mutational repertoires (Figure 1C). Additional data will be presented with this novel approach, which allows us to combine an assessment of stem/progenitor cell frequency with genetic data. This includes studies of CD34+ and CD34- AML, which show striking differences in mutational representation in different stem/progenitor compartments. In summary, our studies of clonal architecture at a single cell level provide us novel insights into the pathogenesis of myeloid transformation and give us new insights into how clonal complexity contributes to disease progression. Disclosures Ooi: Mission Bio: Employment, Equity Ownership. Mendez:Mission Bio: Employment, Equity Ownership. Carroll:Janssen Pharmaceuticals: Consultancy; Incyte: Research Funding; Astellas Pharmaceuticals: Research Funding. Papaemmanuil:Celgene: Research Funding. Viny:Mission Bio: Other: Sponsored travel; Hematology News: Membership on an entity's Board of Directors or advisory committees. Levine:Roche: Consultancy, Research Funding; Amgen: Honoraria; Imago Biosciences: Membership on an entity's Board of Directors or advisory committees; Isoplexis: Membership on an entity's Board of Directors or advisory committees; Qiagen: Membership on an entity's Board of Directors or advisory committees; C4 Therapeutics: Membership on an entity's Board of Directors or advisory committees; Novartis: Consultancy; Prelude Therapeutics: Research Funding; Loxo: Membership on an entity's Board of Directors or advisory committees; Lilly: Honoraria; Gilead: Consultancy; Celgene: Consultancy, Research Funding.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Elena Mylonas ◽  
Kenichi Yoshida ◽  
Mareike Frick ◽  
Kaja Hoyer ◽  
Friederike Christen ◽  
...  

AbstractCancer development is an evolutionary genomic process with parallels to Darwinian selection. It requires acquisition of multiple somatic mutations that collectively cause a malignant phenotype and continuous clonal evolution is often linked to tumor progression. Here, we show the clonal evolution structure in 15 myelofibrosis (MF) patients while receiving treatment with JAK inhibitors (mean follow-up 3.9 years). Whole-exome sequencing at multiple time points reveal acquisition of somatic mutations and copy number aberrations over time. While JAK inhibition therapy does not seem to create a clear evolutionary bottleneck, we observe a more complex clonal architecture over time, and appearance of unrelated clones. Disease progression associates with increased genetic heterogeneity and gain of RAS/RTK pathway mutations. Clonal diversity results in clone-specific expansion within different myeloid cell lineages. Single-cell genotyping of circulating CD34 + progenitor cells allows the reconstruction of MF phylogeny demonstrating loss of heterozygosity and parallel evolution as recurrent events.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Kiyomi Morita ◽  
Feng Wang ◽  
Katharina Jahn ◽  
Tianyuan Hu ◽  
Tomoyuki Tanaka ◽  
...  

AbstractClonal diversity is a consequence of cancer cell evolution driven by Darwinian selection. Precise characterization of clonal architecture is essential to understand the evolutionary history of tumor development and its association with treatment resistance. Here, using a single-cell DNA sequencing, we report the clonal architecture and mutational histories of 123 acute myeloid leukemia (AML) patients. The single-cell data reveals cell-level mutation co-occurrence and enables reconstruction of mutational histories characterized by linear and branching patterns of clonal evolution, with the latter including convergent evolution. Through xenotransplantion, we show leukemia initiating capabilities of individual subclones evolving in parallel. Also, by simultaneous single-cell DNA and cell surface protein analysis, we illustrate both genetic and phenotypic evolution in AML. Lastly, single-cell analysis of longitudinal samples reveals underlying evolutionary process of therapeutic resistance. Together, these data unravel clonal diversity and evolution patterns of AML, and highlight their clinical relevance in the era of precision medicine.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 105-105 ◽  
Author(s):  
Victor Pastor Loyola ◽  
Pritam Kumar Panda ◽  
Sushree Sangita Sahoo ◽  
Enikoe Amina Szvetnik ◽  
Emilia J. Kozyra ◽  
...  

Abstract Childhood myelodysplastic syndromes (MDS) account for less than 5% of pediatric hematologic malignancies and differ from their adult counterpart in terms of biology, genetics, and cure rates. Complete (-7) or partial loss (del7q) of chromosome 7 constitutes the most common cytogenetic abnormality and is associated with more advanced disease typically requiring timely hematopoietic stem cell transplantation (HSCT). Previously, we and others established a link between -7 and germline GATA2 mutations in pediatric MDS (37% of MDS/-7 cases are GATA2-deficient) as well as constitutional SAMD9/9L disorders where -7 is utilized as an escape mechanism from the growth-restrictive effect of SAMD9/9L mutations. To date, comprehensive sequencing studies have been performed in 96 children with primary MDS, as reported by Pastor et al, Leukemia 2017 and Schwartz et al, Nature Comm 2017. This work established mutations in SETBP1, ASXL1, PTPN11, RUNX1 and RAS pathway genes as common somatic drivers. However, little is known about the clonal development of -7 and the role of additional somatic mutations. The knowledge about clonal hierarchies is essential for the understanding of disease progression on molecular level and for mapping potential drug targets. The rationale for the current study was to i) define the most common somatic drivers in a large cohort of patients with childhood MDS, ii) identify clonal/subclonal mutations, iii) infer clonal architecture of monosomy 7 and track the changes over time. We studied a cohort of 576 children and adolescents with primary MDS diagnosed between 1998 and 2016 in Germany, consisting of 482 (83%) patients with refractory cytopenia of childhood (RCC) and 94 (17%) MDS with excess blasts (EB). All patients underwent deep sequencing for 30 genes relevant to pediatric MDS and additional WES was performed in 150/576 patients. Using 20 computational predictors (including CADD and REVEL), population databases and germline testing, we identified the most likely pathogenic mutations. First, we excluded germline predisposing mutations in GATA2, SAMD9/SAMD9L and RUNX1 detected in 7% (38/576), 8% (43 of 548 evaluable) and 0.7% (4/576) of patients, respectively. Then we focused on the exploration of somatic aberrations. Most common karyotype abnormalities were monosomy 7 (13%, 77/576) and trisomy 8 (3%, 17/576). A total of 104 patients carried somatic mutations, expectedly more prevalent in the MDS-EB group as compared to RCC (56%, 53/94 vs 10.6%, 51/482; p<0.0001). The most recurrent somatic hits (≥ 1% frequency within 576 cases) were in SETBP1 (4.2%), ASXL1 (3.8%), RUNX1 (3.3%), NRAS (2.9%), KRAS (1.6%), PTPN11 (1.4%) and STAG2 (1%). We next focused on the -7 karyotype as a common denominator for the mutated group. Mutations were found in 54% (43/79), and the mutational load was significantly higher in -7 vs. non-7 (1.1 vs. 0.1 mutations per patient; p<0.001). In 11 patients with -7 and concomitant SETBP1/ASXL1 driver mutations, SETBP1 surpassed ASXL1 hits (median allelic frequency: 38% vs. 24%, p<0.05), while mutations in other genes were subclonal. Notably, these clonal patterns were independent of the underlying hereditary predisposition (4/11 GATA2; 3/11 SAMD9L). To explore the clonal hierarchy in MDS/-7 we performed targeted sequencing of several hundreds of single bone marrow derived colony forming cells (CFC) in 7 patients with MDS/-7. In all cases, the -7 clone was the founding clone followed by stepwise acquisition of mutations (i.e. -7>SETBP1>ASXL1; -7>SETBP1>ASXL1>PTPN11; -7>SETBP1>ASXL1>CBL, -7>EZH2>PTPN11). Finally, we tracked clonal evolution over time in 12 cases with 2-12 available serial samples using deep sequencing complemented by serial CFC-analysis. This confirmed that SETBP1 clones are rapidly expanding, while ASXL1 subclones exhibit an unstable pattern with clonal sweeping, while additional minor clones are acquired as late events. In 2 of 11 transplanted patients who experienced relapse, the original clonal architecture reappeared after HSCT. In summary, the hierarchy of clonal evolution in pediatric MDS with -7 follows a defined pattern with -7 aberrations arising as ancestral event followed by the acquisition of somatic hits. SETBP1 mutations are the dominant driver while co-dominant ASXL1 mutations are unstable. The functional interdependence and potential pharmacologic targetability of such somatic lesions warrants further studies. Disclosures Niemeyer: Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1984-1984 ◽  
Author(s):  
David Sallman ◽  
Eric Padron ◽  
Jinming Song ◽  
Mohammad Omar Hussaini ◽  
Christine Vaupel ◽  
...  

Abstract Background Hypomethylating agent (HMA) therapy represents the standard of care for patients with higher risk myelodysplastic syndromes although only 50% of patients respond to treatment. Recent evidence from molecular profiling through next-generation sequencing (NGS) in myeloid diseases has been conflicting as to the value of somatic mutations as a biomarker for response to HMA. TET2 mutations, predominantly in the absence of ASXL1 mutations (or variant allele frequency (VAF) < 10%), have been shown to predict HMA response in MDS and chronic myelomonocytic leukemia (CMML) (Itzykson et al., 2011; Bejar et al., 2014 (80% decitabine)) while DNMT3A mutations predict response to frontline HMA treatment in acute myeloid leukemia (AML) (Coombs et al., 2016). Therefore, our goal was to identify molecular predictors of response and outcomes to azacitidine in myeloid malignancies. Patients and Methods Genetically profiled higher-risk MDS, CMML and oligoblastic AML (20-30% blasts) cases were retrospectively identified from the Moffitt Cancer Center MDS database. We evaluated gene mutations associated with DNA methylation (TET2, DNMT3A, IDH1, IDH2, and WT1) and up to 19 additional genes. NGS was performed prior to the initiation of HMA in all patients. The lower limit of VAF detection was set at 5% and the minimum depth of coverage at each position was 500X. Clinical variables and outcomes of MDS patients were characterized at the time of sample procurement. Fisher's exact and t-tests were used for comparative analyses. Kaplan-Meier curves were used to estimate overall survival and analyzed from the date of mutation identification. Multivariate Cox regression models were created to adjust for clinical characteristics. Results From May 2013 to February 2016, a total of 77 patients with NGS for somatic mutations prior to HMA therapy were identified with a median age of 70 years and male predominance (66%). Of the cohort, 97% of patients (n=75) were treated with azacitidine with 17% of patients (n=13) proceeding to allogeneic hematopoietic stem cell transplant (AHSCT). A total of 86% of patients (n=66) had at least one pathogenic mutation. Mutations in DNA methylation occurred in 43% of patients (n=33) while TET2 mutation without clonal ASXL1 mutations occurred in 13% of patients (n=10). At a median follow up 17 months, the median OS of the entire cohort was 12.5 months. Patients with a DNA methylation mutation had a median OS that was not reached (NR) vs a median OS of 11.5 months in wildtype (WT) patients (HR 0.38, 95% CI 0.21 to 0.75; P = 0.005), which remained significant when censoring patients at time of AHSCT (P = 0.002). TP53 mutant (MT) patients (n=14, 18% of cohort) had a median OS of 7.9 months vs 15.4 months in WT patients (HR 3.69, 95% CI 3.04 to 28.8; P = 0.0001). The presence of DNA methylation or TP53 mutation in comparison to wildtype patients significantly stratified prognosis in azacitidine treated patients (Figure 1A, P = 0.0001). In multivariable analysis incorporating age and revised international prognostic scoring system (IPSS-R) category, DNA methylation (HR 0.45, 95% CI 0.21 to 0.96; P = 0.04) and TP53 (HR 2.34, 95% CI 1.04 to 5.26; P = 0.04) mutation status remained predictive for survival. Notably, response rates in DNA methylation mutant patients were similar to WT patients (40% versus 42%) with no difference in treatment duration. However, the overall response rate of TET2 MT/ASXL1 WT patients was 70% versus 36% in the rest of the cohort (P =0.08) and 0% in TET2 MT/ASXL1 MT patients (0/6, P =0.01) with a significantly longer duration of treatment in the TET2 MT/ASXL1 WT cohort (median number of cycles 7.5 versus 4; P = 0.002). Additionally, TET2 MT/ASXL1 WT patients had longer survival (median OS NR vs 12.2 months; P = 0.047). When censoring for transplant, the impact of TET2 MT/ASXL1 WT genoptype was significantly strengthened with 70% of patients alive past 15 months (median OS NR vs 9.9 months; HR 0.24, 95% CI 0.19 to 0.75; P = 0.007; Figure 1B). Conclusion In patients with myeloid malignancies, molecular profiling via NGS can predict outcomes to azacitidine therapy. Patients with mutations of DNA methylation have improved OS whereas OS is poor in TP53 MT patients. Most importantly, TET2 MT/ASXL1 WT identifies a genotypic subgroup with particularly good outcomes when treated with HMA without AHSCT and potentially challenges the early timing of AHSCT for higher risk patients and this molecular profile. Figure 1 Figure 1. Disclosures Padron: Novartis: Honoraria; Incyte: Research Funding; CTI: Honoraria, Research Funding; KALOBIOS: Research Funding. Vaupel:Genoptix, a Novartis Company: Employment. Hall:Genoptix, a Novartis Company: Employment. Komrokji:Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Consultancy, Speakers Bureau; Boehringer-Ingelheim: Research Funding; Incyte: Consultancy.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 7584-7584
Author(s):  
J. L. Marks ◽  
M. D. McLellan ◽  
Y. Kasai ◽  
L. A. Fulton ◽  
E. R. Mardis ◽  
...  

7584 Background: About fifty percent of lung adenocarcinomas harbor somatic mutations in six genes that encode signaling proteins in the EGFR signaling pathway, i.e. EGFR, HER2/ERBB2, HER4/ERBB4, PIK3CA, BRAF, and KRAS. We performed mutational profiling of a large cohort of lung adenocarcinomas to uncover other somatic mutations that could contribute to lung tumorigenesis. Methods: We analyzed genomic DNA from 261 resected, clinically well-annotated non-small cell lung cancer (NSCLC) specimens. 90% of tumors were adenocarcinomas, and 10% were squamous cell carcinomas. The coding sequences of 39 genes, encoding proteins mostly in the EGFR signaling cascade and FGFR1–4, were screened for somatic mutations via high-throughput dideoxynucleotide sequencing of PCR-amplified gene products. Mutations were considered to be somatic only if they were found in an independent tumor-derived PCR product but not in matched normal tissue. Results: First-pass analysis of 9 MB of tumor sequence identified 199 distinct types of genetic variants that differed from published reference sequences. At least one variant was found in each gene analyzed. In addition to 6 variants found in RAS genes, we further examined the 94 variants localized to exons encoding the kinase domain of respective proteins. We have thus far identified known somatic mutations in EGFR, KRAS, BRAF, and PIK3CA, in addition to a number of previously unreported single nucleotide polymorphisms (SNPs). Conclusions: Mutational profiling of genes that encode for components of the EGFR signaling pathway has revealed multiple putative genetic variants in lung adenocarcinomas. Further analysis of potential somatic mutations is in progress. No significant financial relationships to disclose.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 841
Author(s):  
Pamela Acha ◽  
Laura Palomo ◽  
Francisco Fuster-Tormo ◽  
Blanca Xicoy ◽  
Mar Mallo ◽  
...  

Myelodysplastic syndromes (MDS) are a heterogeneous group of hematological diseases. Among them, the most well characterized subtype is MDS with isolated chromosome 5q deletion (MDS del(5q)), which is the only one defined by a cytogenetic abnormality that makes these patients candidates to be treated with lenalidomide. During the last decade, single cell (SC) analysis has emerged as a powerful tool to decipher clonal architecture and to further understand cancer and other diseases at higher resolution level compared to bulk sequencing techniques. In this study, a SC approach was used to analyze intratumoral heterogeneity in four patients with MDS del(5q). Single CD34+CD117+CD45+CD19- bone marrow hematopoietic stem progenitor cells were isolated using the C1 system (Fluidigm) from diagnosis or before receiving any treatment and from available follow-up samples. Selected somatic alterations were further analyzed in SC by high-throughput qPCR (Biomark HD, Fluidigm) using specific TaqMan assays. A median of 175 cells per sample were analyzed. Inferred clonal architectures were relatively simple and either linear or branching. Similar to previous studies based on bulk sequencing to infer clonal architecture, we were able to observe that an ancestral event in one patient can appear as a secondary hit in another one, thus reflecting the high intratumoral heterogeneity in MDS del(5q) and the importance of patient-specific molecular characterization.


Sign in / Sign up

Export Citation Format

Share Document