scholarly journals Transcriptome analysis of somatic cell populations in the Drosophila testis links metabolism and stemness

2020 ◽  
Author(s):  
Silvana Hof-Michel ◽  
Christian Bökel

AbstractDue to its simple cellular architecture and genetic tractability the fly testis was one of the first model systems in which stem cell - niche interactions were studied at the molecular level. However, to date there is no comprehensive information on the endogenous, cell type specific transcription profiles associated with either stem cell or differentiated states. Focusing on the somatic lineage we have therefore isolated CySCs, differentiated CyCs, hub cells, and stem cell-like tumour cells overexpressing Zfh1, and have mapped their transcriptomes by RNAseq.Here we report i) that the different somatic cell populations show extensive, genome wide differences in transcription levels, in particular associated with energy metabolism and innate immune signalling, ii) that differential activation of multiple signalling pathways renders Zfh1 overexpressing tumour cells unsuitable for use as a stem cell model, and iii) that the transcriptome data could be successfully used for identifying genes with stem cell specific expression patterns and for predicting aspects of stem cell physiology whose relevance for stem cell function could be validated in preliminary experiments.The present data set should therefore facilitate future research on the interaction of stem cells with their niche using the highly successful fly testis model system.

2018 ◽  
Vol 7 (2) ◽  
pp. R69-R87 ◽  
Author(s):  
Jan-Bernd Stukenborg ◽  
Kirsi Jahnukainen ◽  
Marsida Hutka ◽  
Rod T Mitchell

Testicular function and future fertility may be affected by cancer treatment during childhood. Whilst survival of the germ (stem) cells is critical for ensuring the potential for fertility in these patients, the somatic cell populations also play a crucial role in providing a suitable environment to support germ cell maintenance and subsequent development. Regulation of the spermatogonial germ-stem cell niche involves many signalling pathways with hormonal influence from the hypothalamo-pituitary-gonadal axis. In this review, we describe the somatic cell populations that comprise the testicular germ-stem cell niche in humans and how they may be affected by cancer treatment during childhood. We also discuss the experimental models that may be utilized to manipulate the somatic environment and report the results of studies that investigate the potential role of somatic cells in the protection of the germ cells in the testis from cancer treatment.


2017 ◽  
Vol 217 (1) ◽  
pp. 79-92 ◽  
Author(s):  
Brice E. Keyes ◽  
Elaine Fuchs

Stem cells are imbued with unique qualities. They have the capacity to propagate themselves through symmetric divisions and to divide asymmetrically to engender new cells that can progress to differentiate into tissue-specific, terminal cell types. Armed with these qualities, stem cells in adult tissues are tasked with replacing decaying cells and regenerating tissue after injury to maintain optimal tissue function. With increasing age, stem cell functional abilities decline, resulting in reduced organ function and delays in tissue repair. Here, we review the effect of aging in five well-studied adult murine stem cell populations and explore age-related declines in stem cell function and their consequences for stem cell self-renewal, tissue homeostasis, and regeneration. Finally, we examine transcriptional changes that have been documented in aged stem cell populations and discuss new questions and future directions that this collection of data has uncovered.


Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1694
Author(s):  
Tina Fløyel ◽  
Caroline Frørup ◽  
Joachim Størling ◽  
Flemming Pociot

Emerging evidence suggests that several of the lysosomal cathepsin proteases are genetically associated with type 1 diabetes (T1D) and participate in immune-mediated destruction of the pancreatic β cells. We previously reported that the T1D candidate gene cathepsin H is downregulated by pro-inflammatory cytokines in human pancreatic islets and regulates β-cell function, apoptosis, and disease progression in children with new-onset T1D. In the present study, the objective was to investigate the expression patterns of all 15 known cathepsins in β-cell model systems and examine their role in the regulation of cytokine-induced apoptosis. Real-time qPCR screening of the cathepsins in human islets, 1.1B4 and INS-1E β-cell models identified several cathepsins that were expressed and regulated by pro-inflammatory cytokines. Using small interfering RNAs to knock down (KD) the cytokine-regulated cathepsins, we identified an anti-apoptotic function of cathepsin C as KD increased cytokine-induced apoptosis. KD of cathepsin C correlated with increased phosphorylation of JNK and p38 mitogen-activated protein kinases, and elevated chemokine CXCL10/IP-10 expression. This study suggests that cathepsin C is a modulator of β-cell survival, and that immune modulation of cathepsin expression in islets may contribute to immune-mediated β-cell destruction in T1D.


2015 ◽  
Vol 112 (40) ◽  
pp. 12462-12467 ◽  
Author(s):  
Kaja Wasik ◽  
James Gurtowski ◽  
Xin Zhou ◽  
Olivia Mendivil Ramos ◽  
M. Joaquina Delás ◽  
...  

The free-living flatworm, Macrostomum lignano has an impressive regenerative capacity. Following injury, it can regenerate almost an entirely new organism because of the presence of an abundant somatic stem cell population, the neoblasts. This set of unique properties makes many flatworms attractive organisms for studying the evolution of pathways involved in tissue self-renewal, cell-fate specification, and regeneration. The use of these organisms as models, however, is hampered by the lack of a well-assembled and annotated genome sequences, fundamental to modern genetic and molecular studies. Here we report the genomic sequence of M. lignano and an accompanying characterization of its transcriptome. The genome structure of M. lignano is remarkably complex, with ∼75% of its sequence being comprised of simple repeats and transposon sequences. This has made high-quality assembly from Illumina reads alone impossible (N50 = 222 bp). We therefore generated 130× coverage by long sequencing reads from the Pacific Biosciences platform to create a substantially improved assembly with an N50 of 64 Kbp. We complemented the reference genome with an assembled and annotated transcriptome, and used both of these datasets in combination to probe gene-expression patterns during regeneration, examining pathways important to stem cell function.


2021 ◽  
Vol 118 (16) ◽  
pp. e2017148118
Author(s):  
Najla Kfoury ◽  
Zongtai Qi ◽  
Briana C. Prager ◽  
Michael N. Wilkinson ◽  
Lauren Broestl ◽  
...  

Sex can be an important determinant of cancer phenotype, and exploring sex-biased tumor biology holds promise for identifying novel therapeutic targets and new approaches to cancer treatment. In an established isogenic murine model of glioblastoma (GBM), we discovered correlated transcriptome-wide sex differences in gene expression, H3K27ac marks, large Brd4-bound enhancer usage, and Brd4 localization to Myc and p53 genomic binding sites. These sex-biased gene expression patterns were also evident in human glioblastoma stem cells (GSCs). These observations led us to hypothesize that Brd4-bound enhancers might underlie sex differences in stem cell function and tumorigenicity in GBM. We found that male and female GBM cells exhibited sex-specific responses to pharmacological or genetic inhibition of Brd4. Brd4 knockdown or pharmacologic inhibition decreased male GBM cell clonogenicity and in vivo tumorigenesis while increasing both in female GBM cells. These results were validated in male and female patient-derived GBM cell lines. Furthermore, analysis of the Cancer Therapeutic Response Portal of human GBM samples segregated by sex revealed that male GBM cells are significantly more sensitive to BET (bromodomain and extraterminal) inhibitors than are female cells. Thus, Brd4 activity is revealed to drive sex differences in stem cell and tumorigenic phenotypes, which can be abrogated by sex-specific responses to BET inhibition. This has important implications for the clinical evaluation and use of BET inhibitors.


1999 ◽  
Vol 112 (18) ◽  
pp. 3029-3038
Author(s):  
E.M. Slorach ◽  
F.C. Campbell ◽  
J.R. Dorin

We present here an in vivo mouse model for intestinal stem cell function and differentiation that uses postnatal intestinal epithelial cell aggregates to generate a differentiated murine small intestinal mucosa with full crypt-villus architecture. The process of neomucosal formation is highly similar to that of intestinal regeneration. Both in vivo grafting and primary culture of these cells reveal two different epithelial cell populations, which display properties consistent with intestinal epithelial transit amplifying and stem cell populations. Using this model system with a mixture of wild-type and transgene marked cells, we have shown that neomucosae originally develop from single aggregates, but that over time the mucosae fuse to form chimaeric mucosae. Despite fusion, the chimaeric mucosae maintain crypt clonality and villus polyclonality, demonstrating that clonal segregation persists during intestinal epithelial regeneration.


2016 ◽  
Vol 28 (2) ◽  
pp. 143
Author(s):  
S. Simpson ◽  
L. Gonzalez ◽  
J. Chung ◽  
A. Blikslager ◽  
S. Magness ◽  
...  

Murine models for the study of adult stem cell populations have broadened the understanding of previously uncharacterized stem cell niches. The development of murine reporter lines for the leucine-rich repeat-containing G-protein-coupled receptor-5 (Lgr5) has highlighted the importance of this gene as a stem cell marker in the stomach, intestine, hair follicle, liver, and kidney in mice. These models however have significant limitations in terms of translational applications because of anatomical and physiological differences between humans and mice. In order to overcome these limitations, we have sought to develop a porcine LGR5 reporter line. We report the generation of a porcine stem cell reporter line using the combination of transcription activator-like effector nucleases and somatic cell NT. Transcription activator-like effector nuclease-mediated homologous recombination was used to drive the integration of an internal ribosome entry site green fluorescent protein fusion into the 3′ untranslated region of the LGR5 locus in porcine fetal fibroblast cells. Multiple cell lines were developed and screened for the proper integration event. Upon confirmation of proper integration by genomic DNA sequencing, these lines were used as donors for somatic cell NT. Transfer of the somatic cell NT reconstructed embryos to a surrogate gilt resulted in 3 live births, and the establishment of a founder line of LGR5-green fluorescent protein reporter pigs. We have begun to characterise these lines, having observed fluorescent labelling of putative stem cell populations in the intestinal crypts and hair follicles from these animals. Many of these observations parallel the expression patterns observed in similar murine models. We have confirmed the fluorescent reporter signal by immunohistochemistry using an anti-green fluorescent protein antibody, and are working towards colocalization studies using anti-LGR5 antibodies and RNA in situ hybridization, as well as the characterisation of additional stem cell populations in the pig. The development of this line of transgenic pigs represents significant progress toward the study of adult stem cells, their progenitors, and the stem cell niche, using a large animal model with an anatomy, physiology, and ability to recapitulate human disease that overcomes the current limitations of rodent models. Funding was provided by NIH R21OD019738.


2019 ◽  
Vol 295 (3) ◽  
pp. 690-700 ◽  
Author(s):  
Kuo Liu ◽  
Muxue Tang ◽  
Hengwei Jin ◽  
Qiaozhen Liu ◽  
Lingjuan He ◽  
...  

Genetic lineage tracing is widely used to study organ development and tissue regeneration. Multicolor reporters are a powerful platform for simultaneously tracking discrete cell populations. Here, combining Dre-rox and Cre-loxP systems, we generated a new dual-recombinase reporter system, called Rosa26 traffic light reporter (R26-TLR), to monitor red, green, and yellow fluorescence. Using this new reporter system with the three distinct fluorescent reporters combined on one allele, we found that the readouts of the two recombinases Cre and Dre simultaneously reflect Cre+Dre−, Cre−Dre+, and Cre+Dre+ cell lineages. As proof of principle, we show specific labeling in three distinct progenitor/stem cell populations, including club cells, AT2 cells, and bronchoalveolar stem cells, in Sftpc-DreER;Scgb1a1-CreER;R26-TLR mice. By using this new dual-recombinase reporter system, we simultaneously traced the cell fate of these three distinct cell populations during lung repair and regeneration, providing a more comprehensive picture of stem cell function in distal airway repair and regeneration. We propose that this new reporter system will advance developmental and regenerative research by facilitating a more sophisticated genetic approach to studying in vivo cell fate plasticity.


2017 ◽  
Author(s):  
Najla Kfoury ◽  
Zongtai Qi ◽  
Briana C Prager ◽  
Michael N Wilkinson ◽  
Lauren Broestl ◽  
...  

Sex can be an important determinant of cancer phenotype, and exploring sex-biased tumor biology holds promise for identifying novel therapeutic targets and new approaches to cancer treatment. In an established isogenic murine model of glioblastoma, we discovered correlated transcriptome-wide sex differences in gene expression, H3K27ac marks, large Brd4-bound enhancer usage, and Brd4 localization to Myc and p53 genomic binding sites. These sex-biased gene expression patterns were also evident in human glioblastoma stem cells (GSCs). These observations led us to hypothesize that Brd4-bound enhancers might underlie sex differences in stem cell function and tumorigenicity in GBM. We found that male and female GBM cells exhibited opposing responses to pharmacological or genetic inhibition of Brd4. Brd4 knockdown or pharmacologic inhibition decreased male GBM cell clonogenicity and in vivo tumorigenesis, while increasing both in female GBM cells. These results were validated in male and female patient-derived GBM cell lines. Furthermore, analysis of the Cancer Therapeutic Response Portal of human GBM samples segregated by sex revealed that male GBM cells are significantly more sensitive to BET inhibitors than are female cells. Thus, for the first time, Brd4 activity is revealed to drive a sex differences in stem cell and tumorigenic phenotype, resulting in diametrically opposite responses to BET inhibition in male and female GBM cells. This has important implications for the clinical evaluation and use of BET inhibitors.SignificanceConsistent sex differences in incidence and outcome have been reported in numerous cancers including brain tumors. GBM, the most common and aggressive primary brain tumor, occurs with higher incidence and shorter survival in males compared to females. Brd4 is essential for regulating transcriptome-wide gene expression and specifying cell identity, including that of GBM. We report that sex-biased Brd4 activity drive sex differences in GBM and render male and female tumor cells differentially sensitive to BET inhibitors. The observed sex differences in BETi treatment strongly indicate that sex differences in disease biology translate into sex differences in therapeutic responses. This has critical implications for clinical use of BET inhibitors further affirming the importance of inclusion of sex as a biological variable.


Author(s):  
Bojie Lin ◽  
Jiangying Zhu ◽  
Guoqian Yin ◽  
Mingde Liao ◽  
Guanyu Lin ◽  
...  

IntroductionAdult stem cell function has been one of the most intensively explored areas of biological and biomedical research, with hair follicle stem cells serving as one of the best model systems. This study explored the role of the transcription factor DLX5 in regulating hair follicle stem cell (HFSC) differentiation.MethodsHFSCs were isolated, characterized, and assessed for their expression of DLX5, c-MYC, NSD1, and miR-29c-3p using RT-qPCR, Western blot analysis, or immunofluorescence. Next, the ability of HFSCs to proliferate as well as differentiate into either sebaceous gland cells or epidermal cells was determined. The binding of DLX5 to the c-MYC promoter region, the binding of c-MYC to the miR-29c-3p promoter region, and the binding of miR-29c-3p to the 3′-UTR of NSD1 mRNA were verified by luciferase activity assay and ChIP experiments.ResultsDLX5 was highly expressed in differentiated HFSCs. DLX5 transcriptionally activated c-MYC expression to induce HFSC differentiation. c-MYC was able to bind the miR-29c-3p promoter and thus suppressed its expression. Without miR-29c-3p mediated suppression, NSD1 was then able to promote HFSC differentiation. These in vitro experiments suggested that DLX5 could promote HFSC differentiation via the regulation of the c-MYC/miR-29c-3p/NSD1 axis.DiscussionThis study demonstrates that DLX5 promotes HFSC differentiation by modulating the c-MYC/miR-29c-3p/NSD1 axis and identifies a new mechanism regulating HFSC differentiation.


Sign in / Sign up

Export Citation Format

Share Document