scholarly journals Artesunate interacts with Vitamin D receptor to reverse mouse model of sepsis-induced immunosuppression via enhancing autophagy

2020 ◽  
Author(s):  
Shenglan Shang ◽  
Jiaqi Wu ◽  
Xiaoli Li ◽  
Xin Liu ◽  
Pan Li ◽  
...  

AbstractBackground and PurposeImmunosuppression is the predominant cause of mortality for sepsis due to failure to eradicate invading pathogens. Unfortunately, no effective and specific drugs capable of reversing immunosuppression are available for clinical use. Increasing evidence implicates vitamin D receptor (VDR) involved in sepsis-induced immunosuppression. Herein, artesunate (AS) was discovered to reverse sepsis-induced immunosuppression and its molecular mechanism is investigated.Experimental ApproachEffect of artesunate on sepsis-induced immunosuppression was investigated in mice and in vitro. VDR was predicted to be an interacted candidate of AS by bioinformatics predict, then identified using PCR and immunoblotting. VDR, ATG16L1 and NF-κB p65 were modified to investigate the alteration of AS’s effect on pro-inflammatory cytokines release, bacteria clearance and autophagy activities in sepsis-induced immunosuppression.Key ResultsAS significantly reduced the mortality of cecal ligation and puncture (CLP)-induced sepsis immunosuppression mice challenged with Pseudomonas Aeruginosa, and enhanced proinflammatory cytokines release and bacterial clearance to reverse sepsis-induced immunosuppression in vivo and in vitro. Mechanically, AS interacted with VDR thereby inhibited the nuclear translocation of VDR, then influencing ATG16L1 transcription and subsequent autophagy activity. In addition, AS inhibited physical interaction between VDR and NF-κB p65 in LPS tolerance macrophages, then promoted nuclear translocation of NF-κB p65, which activated the transcription of NF-κB p65 target genes such as pro-inflammatory cytokines.Conclusion and ImplicationsOur findings provide an evidence that AS interacted with VDR to reverse sepsis-induced immunosuppression in an autophagy and NF-κB dependent way, highlighting a novel approach for sepsis treatment and drug repurposing of AS in the future.

2020 ◽  
Author(s):  
Jing Huang ◽  
Bomiao Ju ◽  
Qi An ◽  
Jing Zhang ◽  
Ping Fan ◽  
...  

Abstract Rationale: Lupus nephritis (LN) is a major risk factor for morbidity and mortality in systemic lupus erythematosus patients, and lupus nephritis treatment is limited to immunosuppressive therapy with many problems. Vitamin D receptor (VDR) can regulate NLRP3 inflammasome which plays critical roles in LN pathogenesis. Objectives: This study was designed to explore the therapeutic effect of VDR agonist on LN and its potential mechanisms, aiming to elucidatethe optimal therapy for LN.Findings: In vivo, treatment of MRL/lpr mice since 8 weeks of age with VDR agonist paricalcitol for 8 weeks decreased disease pathogenesis of LN with markedly improved renal pathological changes, decreased urine protein and serum anti-ds-DNA antibody level in a time-depended manner. In MRL/lpr mice of 16 weeks of age with LN, the expression of NLRP3/caspase-1/IL-1β/IL-18 axis was upregulated detecteded by ELISA, RT-PCR, western blot and immunohistochemistry, while when treated with VDR agonist paricalcitol, expression of this axis was decreased significantly. Further, it is proved that VDR agonist paricalcitol modulated NLRP3/caspase-1/IL-1β/IL-18 axis via inhibiting NF-κB, in addition, co-immunoprecipitation results showed that VDR agonist suppressed NF-κB nuclear translocation by competitively binding with importin 4. In vitro, anti-dsDNA antibody induced apoptosis and upregulation of NF-κB/NLRP3/caspase-1/IL-1β/IL-18 axis in mRTECs, which could be reversed by VDR agonist paricalcitol.Conclusions: Vitamin D receptor agonist may be a promising novel therapeutic strategy for patients with lupus nephritis, which paves the way for future preclinical/clinical studies.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jia Sun ◽  
Xuan Sun ◽  
Junhui Chen ◽  
Xin Liao ◽  
Yixuan He ◽  
...  

Abstract Background Exosomal microRNAs (miRs) derived from mesenchymal stem cells (MSCs) have been shown to play roles in the pathophysiological processes of sepsis. Moreover, miR-27b is highly enriched in MSC-derived exosomes. Herein, we aimed to investigate the potential role and downstream molecular mechanism of exosomal miR-27b in sepsis. Methods Inflammation was induced in bone marrow-derived macrophages (BMDMs) by lipopolysaccharide (LPS), and mice were made septic by cecal ligation and puncture (CLP). The expression pattern of miR-27b in MSC-derived exosomes was characterized using RT-qPCR, and its downstream gene was predicted by in silico analysis. The binding affinity between miR-27b, Jumonji D3 (JMJD3), or nuclear factor κB (NF-κB) was characterized to identify the underlying mechanism. We induced miR-27b overexpression or downregulation, along with silencing of JMJD3 or NF-κB to examine their effects on sepsis. The production of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 was detected by ELISA. Results miR-27b was highly expressed in MSC-derived exosomes. Mechanistic investigations showed that miR-27b targeted JMJD3. miR-27b decreased expression of pro-inflammatory genes by inhibiting the recruitment of JMJD3 and NF-κB at gene promoter region. Through this, MSC-derived exosomal miR-27b diminished production of pro-inflammatory cytokines in LPS-treated BMDMs and septic mice, which could be rescued by upregulation of JMJD3 and NF-κB. Besides, in vitro findings were reproduced by in vivo findings. Conclusion These data demonstrated that exosomal miR-27b derived from MSCs inhibited the development of sepsis by downregulating JMJD3 and inactivating the NF-κB signaling pathway.


2020 ◽  
Vol 35 (3) ◽  
pp. 233-238
Author(s):  
Muflihatul Muniroh

AbstractThe exposure of methylmercury (MeHg) has become a public health concern because of its neurotoxic effect. Various neurological symptoms were detected in Minamata disease patients, who got intoxicated by MeHg, including paresthesia, ataxia, gait disturbance, sensory disturbances, tremors, visual, and hearing impairments, indicating that MeHg could pass the blood-brain barrier (BBB) and cause impairment of neurons and other brain cells. Previous studies have reported some expected mechanisms of MeHg-induced neurotoxicity including the neuroinflammation pathway. It was characterized by the up-regulation of numerous pro-inflammatory cytokines expression. Therefore, the use of anti-inflammatories such as N-acetyl-l-cysteine (NAC) may act as a preventive compound to protect the brain from MeHg harmful effects. This mini-review will explain detailed information on MeHg-induced pro-inflammatory cytokines activation as well as possible preventive strategies using anti-inflammation NAC to protect brain cells, particularly in in vivo and in vitro studies.


2021 ◽  
Author(s):  
Cheng Ding ◽  
Chuang Yang ◽  
Tao Cheng ◽  
Xingyan Wang ◽  
Qiaojie Wang ◽  
...  

Abstract Background:Inflammatory osteolysis is a major complication of total joint replacement surgery that can cause prosthesis failure and necessitate revision surgery. Macrophages are key effector immune cells in inflammatory responses, but excessive M1-polarization of dysfunctional macrophages leads to the secretion of pro-inflammatory cytokines and severe loss of bone tissue. Here, we report the development of macrophage-biomimetic porous SiO2-coated ultrasmall Se particles (Porous Se@SiO2 nanospheres) for the management of inflammatory osteolysis. Results: Macrophage-membrane-coated porous Se@SiO2 nanospheres(M-Se@SiO2) can attenuate lipopolysaccharide (LPS)-induced inflammatory osteolysis by a dual-immunomodulatory effect. As macrophage membrane decoys, these nanoparticles reduce toxin levels and neutralize pro-inflammatory cytokines. Moreover, the release of Se can induce the polarization of macrophages toward the anti-inflammatory M2-phenotype. These effects are mediated via the inhibition of p65, p38, and extracellular signal-regulated kinase(ERK) signaling. Additionally, the immune environment created by M-Se@SiO2 reduces the inhibition of osteogenic differentiation caused by pro-inflammation cytokines, confirmed through in vitro and in vivo experiments.Conclusion: Our findings suggest that M-Se@SiO2 has an immunomodulatory role in LPS-induced inflammation and bone remodeling, which demonstrates that M-Se@SiO2 is a promising engineered nano-platform for the treatment of osteolysis arising after arthroplasty.


2000 ◽  
Vol 11 (10) ◽  
pp. 1857-1864
Author(s):  
L. SHANNON HOLLIDAY ◽  
STEPHEN L. GLUCK ◽  
EDUARDO SLATOPOLSKY ◽  
ALEX J. BROWN

Abstract. 1,25-Dihydroxy-19-nor-vitamin D2 (19-norD2), a new analog of 1,25(OH)2D3, suppresses parathyroid hormone in renal failure patients and in uremic rats but has less calcemic activity than 1,25(OH)2D3. Although 19-norD2 has high affinity for the vitamin D receptor and similar pharmacokinetics to those of 1,25(OH)2D3, it has much less bone resorbing activity in vivo. The intrinsic activity of 19-norD2 on osteoclastogenesis and activation of bone resorption in mouse bone marrow cultures was examined to determine the mechanism involved. 19-norD2 and 1,25(OH)2D3 (10 nM) were equivalent in stimulating the formation and maintenance of large multinucleated, tartrate-resistant acid phosphatase-positive cells. However, the amount of bone resorbed by osteoclasts stimulated by 10 nM 19-norD2, as measured by pit-forming assays, was reduced 62% compared with 10 nM 1,25(OH)2D3-stimulated osteoclasts (P < 0.05). This difference could not be attributed to enhanced catabolism or to downregulated vitamin D receptor. The rate of degradation of 19-norD2 in cultures was approximately 20% greater than 1,25(OH)2D3, not enough to account for the different effects on bone resorption. The VDR levels were identical in cultures that were treated with 19-norD2 and 1,25(OH)2D3. In summary, 19-norD2 is less effective than 1,25(OH)2D3 in stimulating mouse marrow osteoclasts to resorb bone. The reason for this difference is not clear but seems to involve the late maturation and/or activation of osteoclasts as the number of pits produced by each tartrate-resistant acid phosphatase-positive cell is reduced under stimulation by 19-norD2 compared with 1,25(OH)2D3.


2020 ◽  
Author(s):  
Shao-Peng Lin ◽  
Jue-Xian Wei ◽  
Shan Ye ◽  
Jiasong Hu ◽  
Jingyi Bu ◽  
...  

Abstract Background and purpose: Artemisinin has been in use as an anti-malarial drug for almost half a century in the world. There is growing evidence that artemisinin also possesses potent anti-inflammatory and immunoregulatory properties. However, the efficacy of artemisinin treatment in neurocognitive deficits associated with sepsis remains unknown. Here, we evaluate the possible protective effects and explore the underlying mechanism of artemisinin on cognitive impairment resulting from sepsis.Methods: Male C57BL/6 mice were pretreated with either vehicle or artemisinin, and then injected with LPS to establish an animal model of sepsis. The cognitive function was then assessed using the Morris water maze. Neuronal damage and neuroinflammation in the hippocampus were evaluated by immunohistochemical and ELISA analysis. Additionally, the protective mechanism of artemisinin was determined in vitro.Results: The results showed that artemisinin preconditioning attenuated LPS-induced cognitive impairment, neural damage, and microglial activation in the mouse brain. The in vitro experiment revealed that artemisinin could reduce the production of pro-inflammatory cytokines and suppress the microglial migration in the BV2 microglia cells. Meanwhile, western blot demonstrated that artemisinin suppressed nuclear translocation of nuclear factor kappa-B and the expression of pro-inflammatory cytokines (i.e. tumor necrosis factor alpha, interleukin-6) by activating adenosine monophosphate-activated protein kinaseα1 (AMPKα1) pathway. Furthermore, knock-down of AMPKα1 markedly abolished the anti-inflammatory effects of artemisinin.Conclusion: Artemisinin is a potential therapeutic agent for sepsis-associated neuroinflammation and cognitive impairment, and its effect was probably mediated by the activation of AMPKα1 signalling pathway in microglia.


Author(s):  
Bruna Lima Correa ◽  
Nadia El Harane ◽  
Ingrid Gomez ◽  
Hocine Rachid Hocine ◽  
José Vilar ◽  
...  

Abstract Aims The cardioprotective effects of human induced pluripotent stem cell-derived cardiovascular progenitor cells (CPC) are largely mediated by the paracrine release of extracellular vesicles (EV). We aimed to assess the immunological behaviour of EV-CPC, which is a prerequisite for their clinical translation. Methods and results Flow cytometry demonstrated that EV-CPC expressed very low levels of immune relevant molecules including HLA Class I, CD80, CD274 (PD-L1), and CD275 (ICOS-L); and moderate levels of ligands of the natural killer (NK) cell activating receptor, NKG2D. In mixed lymphocyte reactions, EV-CPC neither induced nor modulated adaptive allogeneic T cell immune responses. They also failed to induce NK cell degranulation, even at high concentrations. These in vitro effects were confirmed in vivo as repeated injections of EV-CPC did not stimulate production of immunoglobulins or affect the interferon (IFN)-γ responses from primed splenocytes. In a mouse model of chronic heart failure, intra-myocardial injections of EV-CPC, 3 weeks after myocardial infarction, decreased both the number of cardiac pro-inflammatory Ly6Chigh monocytes and circulating levels of pro-inflammatory cytokines (IL-1α, TNF-α, and IFN-γ). In a model of acute infarction, direct cardiac injection of EV-CPC 2 days after infarction reduced pro-inflammatory macrophages, Ly6Chigh monocytes, and neutrophils in heart tissue as compared to controls. EV-CPC also reduced levels of pro-inflammatory cytokines IL-1α, IL-2, and IL-6, and increased levels of the anti-inflammatory cytokine IL-10. These effects on human macrophages and monocytes were reproduced in vitro; EV-CPC reduced the number of pro-inflammatory monocytes and M1 macrophages, while increasing the number of anti-inflammatory M2 macrophages. Conclusions EV-CPC do not trigger an immune response either in in vitro human allogeneic models or in immunocompetent animal models. The capacity for orienting the response of monocyte/macrophages towards resolution of inflammation strengthens the clinical attractiveness of EV-CPC as an acellular therapy for cardiac repair.


2015 ◽  
Vol 35 (3) ◽  
pp. 983-996 ◽  
Author(s):  
Yingmin Yao ◽  
Chanwei Dou ◽  
Zhongtang Lu ◽  
Xin Zheng ◽  
Qingguang Liu

Background & Aims: To investigate the expression and prognostic value of MACC1 in patients with HCC and identify the mechanism by which MACC1 inhibits HCC cell apoptosis. Methods: MACC1 and p-AKT expression was studied using immunohistochemistry of both HCC tissues and adjacent liver tissues. qRT-PCR and western immunoblotting were used to examine the expression of target genes at the mRNA and protein levels, respectively. The MTT assay was used to assess cell viability, and cell apoptosis was determined by DAPI staining, Annexin V/PI staining and Caspase 3/7 assay. Nude mice were used to perform in vivo experiments. Results: The overexpression of MACC1 was found in HCC tissues and was correlated with poor postsurgical prognosis. There was a positive relationship between MACC1 and p-AKT expression in HCC tissues. In vitro experiments showed that MACC1 repressed HCC cell apoptosis and promoted cell growth. Knockdown of c-MET abolished the anti-apoptotic function of MACC1. Next, MACC1 was verified to activate PI3K/AKT signaling by sensitizing HGF/c-MET signaling in HCC. MACC1 overexpression enhanced the HGF-driven phosphorylation of BAD, Caspase 9 and FKHRL1 and inhibited their pro-apoptotic functions in HCC cells. Finally, MACC1 was shown to inhibit cell apoptosis and promote HCC growth in vivo. Conclusions: This investigation revealed that MACC1 overexpression predicted worse prognosis after liver resection, which was attributed to the repression of HCC cell apoptosis via a molecular mechanism in which MACC1 accelerated the activation of the HGF/c-MET/PI3K/AKT pathway and phosphorylated BAD, Caspase 9 and FKHRL1, ultimately preventing their nuclear translocation and their pro-apoptotic function.


PLoS ONE ◽  
2014 ◽  
Vol 9 (10) ◽  
pp. e109387 ◽  
Author(s):  
Malin Wennström ◽  
Shorena Janelidze ◽  
Cecilie Bay-Richter ◽  
Lennart Minthon ◽  
Lena Brundin

2016 ◽  
Vol 11 (6) ◽  
pp. 1934578X1601100
Author(s):  
Anna K Gazha ◽  
Lyudmila A. Ivanushko ◽  
Eleonora V. Levina ◽  
Sergey N. Fedorov ◽  
Tatyana S. Zaporozets ◽  
...  

The action of seven polyhydroxylated sterol mono- and disulfates (1-7), isolated from ophiuroids, on innate and adaptive immunity was examined in in vitro and in vivo experiments. At least, three of them (1, 2 and 4) increased the functional activities of neutrophils, including levels of oxygen-dependent metabolism, adhesive and phagocytic properties, and induced the expression of pro-inflammatory cytokines TNF-α and IL-8. Compound 4 was the most active for enhancing the production of antibody forming cells in the mouse spleen.


Sign in / Sign up

Export Citation Format

Share Document