Artemisinin improves neurocognitive deficits associated with sepsis by activating the AMPK axis in the microglia.

2020 ◽  
Author(s):  
Shao-Peng Lin ◽  
Jue-Xian Wei ◽  
Shan Ye ◽  
Jiasong Hu ◽  
Jingyi Bu ◽  
...  

Abstract Background and purpose: Artemisinin has been in use as an anti-malarial drug for almost half a century in the world. There is growing evidence that artemisinin also possesses potent anti-inflammatory and immunoregulatory properties. However, the efficacy of artemisinin treatment in neurocognitive deficits associated with sepsis remains unknown. Here, we evaluate the possible protective effects and explore the underlying mechanism of artemisinin on cognitive impairment resulting from sepsis.Methods: Male C57BL/6 mice were pretreated with either vehicle or artemisinin, and then injected with LPS to establish an animal model of sepsis. The cognitive function was then assessed using the Morris water maze. Neuronal damage and neuroinflammation in the hippocampus were evaluated by immunohistochemical and ELISA analysis. Additionally, the protective mechanism of artemisinin was determined in vitro.Results: The results showed that artemisinin preconditioning attenuated LPS-induced cognitive impairment, neural damage, and microglial activation in the mouse brain. The in vitro experiment revealed that artemisinin could reduce the production of pro-inflammatory cytokines and suppress the microglial migration in the BV2 microglia cells. Meanwhile, western blot demonstrated that artemisinin suppressed nuclear translocation of nuclear factor kappa-B and the expression of pro-inflammatory cytokines (i.e. tumor necrosis factor alpha, interleukin-6) by activating adenosine monophosphate-activated protein kinaseα1 (AMPKα1) pathway. Furthermore, knock-down of AMPKα1 markedly abolished the anti-inflammatory effects of artemisinin.Conclusion: Artemisinin is a potential therapeutic agent for sepsis-associated neuroinflammation and cognitive impairment, and its effect was probably mediated by the activation of AMPKα1 signalling pathway in microglia.

2019 ◽  
Author(s):  
Shao-Peng Lin ◽  
Jue-Xian Wei ◽  
Shan Ye ◽  
Jiasong Hu ◽  
Jingyi Bu ◽  
...  

Abstract Background and purpose: Artemisinin has been in use as an anti-malarial drug for almost half a century in the world. There is growing evidence that artemisinin also possesses potent anti-inflammatory and immunoregulatory properties. However, the efficacy of artemisinin treatment in sepsis-associated encephalopathy (SAE) remains unknown. Here, we evaluate the possible protective effects and explore the underlying mechanism of action of artemisinin on SAE. Methods: Male C57BL/6mice were pretreated with either vehicle or artemisinin, and then injected with LPS to establish an animal model of SAE. The cognitive function was then assessed using the Morris water maze. Neuronal damage and neuroinflammation in the hippocampus were evaluated by immunohistochemical analysis. Additionally, the protective mechanism of artemisinin was determined in vitro. Results: The results showed that artemisinin preconditioning attenuated LPS-induced cognitive impairment, neural damage, and microglial activation in the mouse brain. Luminex liquid chip revealed that artemisinin could inhibit the pro-inflammatory cytokines and chemokines induced by LPS in the BV2 microglia cells. Meanwhile, artemisinin suppressed the migratory ability of BV2 cells. Western blot demonstrated that artemisinin promoted adenosine monophosphate-activated protein kinaseα1 (AMPKα1) expression and suppressed nuclear translocation of NF-κB. Furthermore, knock-down of AMPKα1 markedly abolished the anti-inflammatory effects of artemisinin when exposed to LPS. Conclusion: Artemisinin is a potential therapeutic agent for SAE, and its effect was probably mediated by the activation of AMPKα1signalling pathway in microglia.


2016 ◽  
Vol 35 (12) ◽  
pp. 1252-1263 ◽  
Author(s):  
SS Palabiyik ◽  
E Karakus ◽  
Z Halici ◽  
E Cadirci ◽  
Y Bayir ◽  
...  

Acetaminophen (APAP) overdose could induce liver damage and lead to acute liver failure. The treatment of APAP overdoses could be improved by new therapeutic strategies. Thymus spp., which has many beneficial effects and has been used in folk medicine, is one such potential strategy. In the present study, the hepatoprotective activity of the main constituents of Thymus spp., carvacrol and thymol, were evaluated in light of APAP-induced hepatotoxicity. We hoped to understand the hepatoprotective mechanism of these agents on the antioxidant system and pro-inflammatory cytokines in vitro. Dose-dependent effects of thymol and carvacrol (25, 50, and 100 µM) were tested on cultured HepG2 cells. N-Acetylcysteine (NAC) was tested as positive control. We showed that APAP inhibited HepG2 cell growth by inducing inflammation and oxidative stress. Incubating APAP-exposed HepG2 cells with carvacrol and thymol for 24 h ameliorated this inflammation and oxidative stress. We also evaluated alanine transaminase and lactate dehydrogenase levels of HepG2 cells. We found that thymol and carvacrol protected against APAP-induced toxicity in HepG2 cells by increasing antioxidant activity and reducing pro-inflammatory cytokines, such as tumor necrosis factor α and interleukin 1β. Taking together high-dose thymol and carvacrol treatment has an effect close to NAC treatment in APAP toxicity, but thymol has better treatment effect than carvacrol.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Dan Li ◽  
Chenyu Li ◽  
Yan Xu

Abstract Background and Aims Acute kidney injury (AKI), commonly appeared in cardiac arrest, surgery and kidney transplantation which involved in ischemia-reperfusion (IR) injury of kidney. However, the mechanisms underlying inflammatory response in IR AKI is still unclear. Method Public dataset showed kruppel-like factor 6 (KLF6) was significantly highly expressed (P<0.05) in AKI, implies KLF6 might be associated with AKI. To evaluate the mechanism of KLF6 on IR AKI, 30 rats were randomly divided into sham and IR group, and were sacrificed at 0 h, 3 h, 6 h, 12 h or 24 h after IR. Results The results showed KLF6 expression was peaking at 6 h after IR, and the expression of pro-inflammatory cytokines MCP-1 and TNF-α were increased both in serum and kidney tissues after IR, while anti-inflammatory cytokine IL-10 was decreased after IR. Furthermore, in vitro results showed KLF6 knock-down reduced the pro-inflammatory cytokines expression and increased the anti-inflammatory cytokines expression. Conclusion These results suggest that (1) KLF6 might be a novel biomarker for early diagnosis of AKI and (2) targeting KLF6 expression may offer novel strategies to protect kidneys from IR AKI Figure KLF6, AKI, Control Inflammation


Author(s):  
Bruna Lima Correa ◽  
Nadia El Harane ◽  
Ingrid Gomez ◽  
Hocine Rachid Hocine ◽  
José Vilar ◽  
...  

Abstract Aims The cardioprotective effects of human induced pluripotent stem cell-derived cardiovascular progenitor cells (CPC) are largely mediated by the paracrine release of extracellular vesicles (EV). We aimed to assess the immunological behaviour of EV-CPC, which is a prerequisite for their clinical translation. Methods and results Flow cytometry demonstrated that EV-CPC expressed very low levels of immune relevant molecules including HLA Class I, CD80, CD274 (PD-L1), and CD275 (ICOS-L); and moderate levels of ligands of the natural killer (NK) cell activating receptor, NKG2D. In mixed lymphocyte reactions, EV-CPC neither induced nor modulated adaptive allogeneic T cell immune responses. They also failed to induce NK cell degranulation, even at high concentrations. These in vitro effects were confirmed in vivo as repeated injections of EV-CPC did not stimulate production of immunoglobulins or affect the interferon (IFN)-γ responses from primed splenocytes. In a mouse model of chronic heart failure, intra-myocardial injections of EV-CPC, 3 weeks after myocardial infarction, decreased both the number of cardiac pro-inflammatory Ly6Chigh monocytes and circulating levels of pro-inflammatory cytokines (IL-1α, TNF-α, and IFN-γ). In a model of acute infarction, direct cardiac injection of EV-CPC 2 days after infarction reduced pro-inflammatory macrophages, Ly6Chigh monocytes, and neutrophils in heart tissue as compared to controls. EV-CPC also reduced levels of pro-inflammatory cytokines IL-1α, IL-2, and IL-6, and increased levels of the anti-inflammatory cytokine IL-10. These effects on human macrophages and monocytes were reproduced in vitro; EV-CPC reduced the number of pro-inflammatory monocytes and M1 macrophages, while increasing the number of anti-inflammatory M2 macrophages. Conclusions EV-CPC do not trigger an immune response either in in vitro human allogeneic models or in immunocompetent animal models. The capacity for orienting the response of monocyte/macrophages towards resolution of inflammation strengthens the clinical attractiveness of EV-CPC as an acellular therapy for cardiac repair.


2015 ◽  
Vol 114 (08) ◽  
pp. 337-349 ◽  
Author(s):  
Dragana Komnenov ◽  
Corey Scipione ◽  
Zainab Bazzi ◽  
Justin Garabon ◽  
Marlys Koschinsky ◽  
...  

SummaryThrombin activatable fibrinolysis inhibitor (TAFI) is the zymogen form of a basic carboxypeptidase (TAFIa) with both anti-fibrinolytic and anti-inflammatory properties. The role of TAFI in inflammatory disease is multifaceted and involves modulation both of specific inflammatory mediators as well as of the behaviour of inflammatory cells. Moreover, as suggested by in vitro studies, inflammatory mediators are capable of regulating the expression of CPB2, the gene encoding TAFI. In this study we addressed the hypothesis that decreased TAFI levels observed in inflammation are due to post-transcriptional mechanisms. Treatment of human HepG2 cells with pro-inflammatory cytokines TNFα, IL-6 in combination with IL-1β, or with bacterial lipopolysaccharide (LPS) decreased TAFI protein levels by approximately two-fold over 24 to 48 hours of treatment. Conversely, treatment of HepG2 cells with the anti-inflammatory cytokine IL-10 increased TAFI protein levels by two-fold at both time points. We found that the mechanistic basis for this modulation of TAFI levels involves binding of tristetraprolin (TTP) to the CPB2 3′-UTR, which mediates CPB2 mRNA destabilisation. In this report we also identified that HuR, another ARE-binding protein but one that stabilises transcripts, is capable of binding the CBP2 3’UTR. We found that pro-inflammatory mediators reduce the occupancy of HuR on the CPB2 3’-UTR and that the mutation of the TTP binding site in this context abolishes this effect, although TTP and HuR appear to contact discrete binding sites. Interestingly, all of the mediators tested appear to increase TAFI protein expression in THP-1 macrophages, likewise through effects on CPB2 mRNA stability.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Yue Li ◽  
Taotao Liu ◽  
Yitong Li ◽  
Dengyang Han ◽  
Jingshu Hong ◽  
...  

Systemic inflammation often induces neuroinflammation and disrupts neural functions, ultimately causing cognitive impairment. Furthermore, neuronal inflammation is the key cause of many neurological conditions. It is particularly important to develop effective neuroprotectants to prevent and control inflammatory brain diseases. Baicalin (BAI) has a wide variety of potent neuroprotective and cognitive enhancement properties in various models of neuronal injury through antioxidation, anti-inflammation, anti-apoptosis, and stimulating neurogenesis. Nevertheless, it remains unclear whether BAI can resolve neuroinflammation and cognitive decline triggered by systemic or distant inflammatory processes. In the present study, intraperitoneal lipopolysaccharide (LPS) administration was used to establish neuroinflammation to evaluate the potential neuroprotective and anti-inflammatory effects of BAI. Here, we report that BAI activated silent information regulator 1 (SIRT1) to deacetylate high-mobility group box 1 (HMGB1) protein in response to acute LPS-induced neuroinflammation and cognitive deficits. Furthermore, we demonstrated the anti-inflammatory and cognitive enhancement effects and the underlying molecular mechanisms of BAI in modulating microglial activation and systemic cytokine production, including tumor necrosis factor- (TNF-) α and interleukin- (IL-) 1β, after LPS exposure in mice and in the microglial cell line, BV2. In the hippocampus, BAI not only reduced reactive microglia and inflammatory cytokine production but also modulated SIRT1/HMGB1 signaling in microglia. Interestingly, pretreatment with SIRT1 inhibitor EX-527 abolished the beneficial effects of BAI against LPS exposure. Specifically, BAI treatment inhibited HMGB1 release via the SIRT1/HMGB1 pathway and reduced the nuclear translocation of HMGB1 in LPS-induced BV2 cells. These effects were reversed in BV2 cells by silencing endogenous SIRT1. Taken together, these findings indicated that BAI reduced microglia-associated neuroinflammation and improved acute neurocognitive deficits in LPS-induced mice via SIRT1-dependent downregulation of HMGB1, suggesting a possible novel protection against acute neurobehavioral deficits, such as delayed neurocognitive recovery after anesthesia and surgery challenges.


2017 ◽  
Vol 15 (3) ◽  
pp. 143-151 ◽  
Author(s):  
Rui Fei ◽  
Huan Zhang ◽  
Sheng Zhong ◽  
Baigong Xue ◽  
Yuanqi Gao ◽  
...  

Serine protease inhibitors (serpins) are a superfamily of proteins involved in many important biological processes, including inflammation. Serpins dysfunction-related diseases are mainly treated by augmentation therapy using serpins purified from human plasma. Pnserpin from hyperthermophilic archaeon Pyrobaculum neutrophilum showed protease inhibition activity and high stability. In this study, we examined the anti-inflammatory activity of Pnserpin using xylene-induced acute inflammatory model of mouse ear swelling and lipopolysaccharide (LPS)-induced murine RAW 264.7 macrophages cellular model. The inhibition of mouse ear swelling and the production of pro-inflammatory cytokines in mouse serum or in macrophages cell were used to evaluate the anti-inflammatory effect of Pnserpin. Our results showed that Pnserpin could inhibit the xylene-induced mouse ear swelling and suppress the production of pro-inflammatory cytokines in mouse serum and in LPS-induced RAW264.7 cells. This study indicated that Pnserpin might have anti-inflammatory effect in vivo and in vitro.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jeonghyeon Moon ◽  
Seon-yeong Lee ◽  
Jeong Won Choi ◽  
A Ram Lee ◽  
Jin Hee Yoo ◽  
...  

AbstractScleroderma is an autoimmune disease that causes dermal fibrosis. It occurs when collagen accumulates in tissue as a result of persistent inflammation. Th17 cells and pro-inflammatory cytokines such as IL-1β, IL-6, IL-17, and TNF-α play important roles in the pathogenesis of scleroderma. Because metformin, a medication used to treat diabetes, has effective immunoregulatory functions, we investigated its therapeutic function in scleroderma. Mice in a model of bleomycin-induced scleroderma were treated with metformin for 2 weeks. Histological assessment demonstrated protective effects of metformin against scleroderma. Metformin decreased the expression of pro-inflammatory factors in dermal tissue and lymphocytes. It also decreased mRNA expression of pro-inflammatory cytokines (IL-1β, IL-6, IL-17, and TNF-α) and fibrosis-inducing molecules both in vivo and in vitro. These results suggest that metformin treatment has anti-inflammatory effects on lymphocytes via the inhibition of IL-17 and cytokines related to Th17 differentiation, such as IL-1β, IL-6, and TNF-α. To investigate how metformin modulates the inflammatory process in skin fibroblasts, we measured mTOR-STAT3 signaling in skin fibroblasts and found that phosphorylated mTOR and phosphorylated STAT3 protein expression were decreased by metformin treatment. These results suggest that metformin has potential to treat scleroderma by inhibiting pro-inflammatory cytokines and anti-inflammatory activity mediated by mTOR-STAT3 signaling.


2021 ◽  
Vol 14 (4) ◽  
pp. 380
Author(s):  
Hadeel Alsaegh ◽  
Hala Eweis ◽  
Fatemah Kamal ◽  
Aziza Alrafiah

The risk of developing epilepsy is strongly linked to peripheral inflammatory disorders in humans. High-mobility group box protein 1 (HMGB1) has the most focus for being a suspect in this scenario. The current study aimed to detect the celecoxib effect, an anti-inflammatory drug, on decreasing seizure susceptibility and organ damage in lipopolysaccharides (LPS)/pilocarpine (PILO) pretreated Wistar rats. Rats were divided into 6 groups (8 each): group 1 (control), group 2 (PILO), group 3 (PILO+LPS), group 4 (PILO+LPS+(VPA) Valproic acid), group 5 (PILO+LPS+Celecoxib), and group 6 (PILO+LPS+VPA+Celecoxib). LPS was used to induce sepsis and PILO to induce seizures. Oxidative stress markers, pro-inflammatory cytokines, and HMGB1 levels in serum and brain homogenate were evaluated. Histopathological studies were conducted on the hippocampus, liver, lung, and kidney. Treatment with celecoxib either alone or in combination with VPA significantly reduced Racine score and delays latency to generalized tonic-clonic seizures onset with a significant decrease in hippocampal levels of pro-inflammatory cytokines, oxidative stress markers, and increase in reduced glutathione. In addition, celecoxib treatment either alone or in combination with VPA suppressed HMGB1translocation into peripheral circulation more than treatment with VPA alone. Furthermore, hippocampus, liver, lung, and kidney histopathological changes were improved in contrast to other epileptic groups. Celecoxib either alone or combined with VPA has antiepileptic and multiorgan protective effects on acute seizures and inflammatory models induced by PILO with LPS. It decreased histopathological findings, oxidative, and inflammatory effects induced by VPA and LPS. This might be due to its anti-oxidative, anti-inflammatory and anti-HMGB1 mediated effects.


Author(s):  
Elahe Maleki ◽  
Mohammad Sheibani ◽  
Sadaf Nezamoleslami ◽  
Ahmad Reza Dehpour ◽  
Nasrin Takzaree ◽  
...  

Abstract Objectives Sepsis is a clinical crisis which has been considered as one of the important causes of mortality across the world. We hypothesized that modulation of hyper-inflammatory phase of sepsis pathophysiology can lead to protective effects on survival outcome. Glatiramer acetate (GA) is a neuroprotective drug commonly used in multiple sclerosis (MS). GA is characterized by immunom activity via regulation of innate and adaptive immunity. This study was designed to evaluate the acute treatment with GA on initial inflammatory response-induced mortality in septic mice. Methods Cecal ligation and puncture (CLP) model was operated on male mice as a model of Polymicrobial sepsis. GA was administrated intraperitoneally after the sepsis induction at doses of 0.5, 1, and 2 mg/kg in three treatment groups. To investigate the effect of GA on short-term survival, septic mice were observed during 72 h after CLP. Serum levels of TNF-α, IL-1β, and IL-6 as pro-inflammatory cytokines and also IL-10 as a critical anti-inflammatory cytokine were analysed. To consider sepsis-induced acute kidney injury, renal functional biomarkers and histopathological changes was assessed. Results GA treatment significantly improved survival rate at doses of 1, and 2 mg/kg. Survival improvement was accompanied by remarkable reduction in the pro-inflammatory cytokines and enhanced production of IL-10. GA showed to have protective effects on renal function as well. Conclusions Immunomodulatory and anti-inflammatory properties of GA resulted in increase in survival rate and decrease in inflammatory markers in mice model of cecal ligation and puncture–induced sepsis.


Sign in / Sign up

Export Citation Format

Share Document