scholarly journals Interaction of RSC chromatin remodelling complex with nucleosomes is modulated by H3 K14 acetylation and H2B SUMOylation in vivo

2020 ◽  
Author(s):  
Neha Jain ◽  
Davide Tamborrini ◽  
Brian Evans ◽  
Shereen Chaudhry ◽  
Bryan J. Wilkins ◽  
...  

AbstractChromatin remodelling complexes are multi-subunit nucleosome translocases that reorganize chromatin in the context of DNA replication, repair and transcription. A key question is how these complexes find their target sites on chromatin. Here, we use genetically encoded photo-crosslinker amino acids to map the footprint of Sth1, the catalytic subunit of the RSC (remodels the structure of chromatin) complex, on the nucleosome in living yeast. We find that the interaction of the Sth1 bromodomain with the H3 tail depends on K14 acetylation by Gcn5. This modification does not recruit RSC to chromatin but mediates its interaction with neighbouring nucleosomes. We observe a preference of RSC for H2B SUMOylated nucleosomes in vivo and show that this modification moderately enhances RSC binding to nucleosomes in vitro. Furthermore, RSC is not ejected from chromatin in mitosis, but its mode of nucleosome binding differs between interphase and mitosis. In sum, our in vivo analyses show that RSC recruitment to specific chromatin targets involves multiple histone modifications most likely in combination with other components such as histone variants and transcription factors.Key PointsIn vivo photo-crosslinking reveals the footprint of the ATPase subunit of RSC on the nucleosome.RSC binds to H3 K14ac nucleosomes via the C-terminal bromodomain of its ATPase-subunit Sth1.RSC preferentially localizes to H2B-SUMOylated nucleosomes.

2020 ◽  
Author(s):  
Eszter Doma ◽  
Isabella Maria Mayer ◽  
Tania Brandstoetter ◽  
Barbara Maurer ◽  
Reinhard Grausenburger ◽  
...  

AbstractStudies of molecular mechanisms of hematopoiesis and leukemogenesis are hampered by the unavailability of progenitor cell lines that accurately mimic the situation in vivo. We now report a robust method to generate and maintain LSK (lin-, Sca-1+, c-Kit+) cells which closely resemble MPP1 cells. HPCLSK reconstitute hematopoiesis in lethally irradiated recipient mice over more than eight months. Upon transformation with different oncogenes including BCR/ABL, FLT3-ITD or MLL-AF9 their leukemic counterparts maintain stem cell properties in vitro and recapitulate leukemia formation in vivo. The method to generate HPCLSK can be applied to transgenic mice and we illustrate it for CDK6-deficient animals. Upon BCR/ABLp210 transformation, Cdk6-/- HPCLSKs induce disease with a significantly enhanced latency and reduced incidence, showing the importance of CDK6 in leukemia formation. Studies of the CDK6 transcriptome in murine HPCLSK and human BCR/ABL+ cells have verified that certain pathways depend on CDK6 and have uncovered a novel CDK6-dependent signature, suggesting a role for CDK6 in leukemic progenitor cell homing. Loss of CDK6 may thus lead to a defect in homing. The HPCLSK system represents a unique tool for combined in vitro and in vivo studies and enables the production of large quantities of genetically modifiable hematopoietic or leukemic stem/progenitor cells.Key pointsWe describe the generation of murine cell lines (HPCLSK) which reliably mimic hematopoietic/leukemic progenitor cells.Cdk6-/- BCR/ABLp210 HPCLSKs uncover a novel role for CDK6 in homing.


1964 ◽  
Vol 47 (3_Suppl) ◽  
pp. S28-S36
Author(s):  
Kailash N. Agarwal
Keyword(s):  

ABSTRACT Red cells were incubated in vitro with sulfhydryl inhibitors and Rhantibody with and without prior incubation with prednisolone-hemisuccinate. These erythrocytes were labelled with Cr51 and P32 and their disappearance in vivo after autotransfusion was measured. Prior incubation with prednisolone-hemisuccinate had no effect on the rate of red cell disappearance. The disappearance of the cells was shown to take place without appreciable intravascular destruction.


2021 ◽  
Vol 17 (10) ◽  
pp. 2071-2084
Author(s):  
Tianjiao Han ◽  
Meiying Wang ◽  
Wenchao Li ◽  
Mingxing An ◽  
Hongzheng Fu

Uric acid is the final product of purine metabolism, and excessive serum uric acid can cause gouty arthritis and uric acid nephropathy. Therefore, lowering the uric acid level and alleviating inflammation in the body are the key points to treating these diseases. A stable nanosuspension of peptide BmK9 was prepared by the precipitation-ultrasonication method. By combining uricase on the surface of a positively charged carrier, a complex consisting of neutral rod-shaped BmK9 and uricase nanoparticles (Nplex) was formed to achieve the delivery of BmK9 and uricase, respectively. The formulation of Nplex has a diameter of 180 nm and drug loading up to 200%, which releases BmK9 and uricase slowly and steadily in drug release tests in vitro. There was significantly improved pharmacokinetic behavior of the two drugs because Nplex prolonged the half-life and increased tissue accumulation. Histological assessments showed that the dual drug Nplex can reduce the inflammation response in acute gouty arthritis and chronic uric acid nephropathy in vivo. In the macrophage system, there was lower toxicity and increased beneficial effect on inflammation with Nplex than free BmK9 or uricase. Collectively, this novel formulation provides a dual drug delivery system that can treat gouty arthritis and uric acid nephropathy.


Blood ◽  
2015 ◽  
Vol 125 (18) ◽  
pp. 2806-2814 ◽  
Author(s):  
Stephanie A. Schnell ◽  
Alberto Ambesi-Impiombato ◽  
Marta Sanchez-Martin ◽  
Laura Belver ◽  
Luyao Xu ◽  
...  

Key Points NOTCH1 inhibits apoptosis via HES1-mediated repression of BBC3 in T-ALL. Perhexiline, a HES1 signature modulator drug, has strong antileukemic effects in vitro and in vivo.


2021 ◽  
Vol 9 (Suppl 1) ◽  
pp. A3.2-A4
Author(s):  
J Grün ◽  
I Piseddu ◽  
C Perleberg ◽  
N Röhrle ◽  
S Endres ◽  
...  

BackgroundUnmethylated CpG-DNA is a potent ligand for the endosomal Toll-like-receptor-9, important for the immune activation to pathogen-associated molecules.1 CpG and other TLR-ligands show effective immunotherapeutic capacities in cancer treatment by inducing an antitumorigenic immunity.2 They are able to reduce tumor progression by reduction of intratumoral secretion of the immunoregulating chemokine CCL223 and subsequent recruitment of immunosuppressive regulatory T cells (Treg), which express CCR4 the only so far known receptor for CCL22.4 Our recent work has shown that CCL22 secretion by dendritic cells (DC) in the lymph node, mediates tolerance by inducing DC-Treg contacts.5 Indeed, in the absence of CCL22, immune responses to vaccination were stronger and resulted in tumor rejection.6 Therefore, we are aiming to investigate the effects of TLR-ligands on systemic CCL22 levels, elucidating all involved mechanisms to identify new targets for cancer immunotherapy.Materials and MethodsT, B and CD11c+ DCs of wildtype (wt) and RAG1-/- mice were isolated from splenocytes by magnetic-activated cell sorting for in vitro assays. Different co-cultures were incubated with CpG and GM-CSF, known as an CCL22 inducer.5 For in vivo experiments, wt mice were treated with CpG, R484 or poly(I:C) alone and in combination with GM-CSF. CCL22-levels in a number of organs were analyzed.ResultsAnalyzing the different immune cell compartments in vitro, we found that DCs in whole splenocytes secrete CCL22 during culture while DC cultured alone showed no CCL22 secretion. When treated with CpG, CCL22-levels were reduced in splenocytes, while it was induced in DC culture alone. The same results were seen when RAG splenocytes, that lack functional B and T cells, were cultured with CpG. CpG treated B cells were able to suppress CCL22 secretion by DC unlike T cells alone. Co-cultures of T and B cells treated with CpG, however, induced the strongest CCL22 suppression in DC. In vivo, we could show that all TLR ligands tested reduced CCL22 in a number of organs significantly. Furthermore, CpG showed the strongest suppression of CCL22 even in the presence of the CCL22 inducer GM-CSF.5ConclusionsWe could show that B cells with T cells mediate CCL22 suppression by TLR ligands. The fact that CpG was able to reduce CCL22 levels even in the presence of the inducer GM-CSF demonstrates the potent CCL22 suppressive capacity of TLR ligands.ReferencesO’Neill LA, et al. The history of toll-like receptors – redefining innate immunity. Nat Rev Immunol 2013;13(6):453–60.Rothenfusser S, et al. Recent advances in immunostimulatory CpG oligonucleotides. Curr Opin Mol Ther 2003;5(2):98–106.Wang S, et al. Intratumoral injection of a CpG oligonucleotide reverts resistance to PD-1 blockade by expanding multifunctional CD8+ T cells. Proc Natl Acad Sci U S A 2016;113(46): E7240–E7249.Rapp M, et al. CCL22 controls immunity by promoting regulatory T cell communication with dendritic cells in lymph nodes. J Exp Med 2019;216(5):1170–1181.Piseddu I, et al. Constitutive expression of CCL22 is mediated by T cell-derived GM-CSF. J Immunol 2020;205(8):2056–2065.Anz D, et al. Suppression of intratumoral CCL22 by type i interferon inhibits migration of regulatory T cells and blocks cancer progression. Cancer Res 2015;75(21):4483–93.Disclosure InformationJ. Grün: None. I. Piseddu: None. C. Perleberg: None. N. Röhrle: None. S. Endres: None. D. Anz: None.


2020 ◽  
Author(s):  
Steven F. Grieco ◽  
Xin Qiao ◽  
Xiaoting Zheng ◽  
Yongjun Liu ◽  
Lujia Chen ◽  
...  

SummarySubanesthetic ketamine evokes rapid and long-lasting antidepressant effects in human patients. The mechanism for ketamine’s effects remains elusive, but ketamine may broadly modulate brain plasticity processes. We show that single-dose ketamine reactivates adult mouse visual cortical plasticity and promotes functional recovery of visual acuity defects from amblyopia. Ketamine specifically induces down-regulation of neuregulin-1 (NRG1) expression in parvalbumin-expressing (PV) inhibitory neurons in mouse visual cortex. NRG1 downregulation in PV neurons co-tracks both the fast onset and sustained decreases in synaptic inhibition to excitatory neurons, along with reduced synaptic excitation to PV neurons in vitro and in vivo following a single ketamine treatment. These effects are blocked by exogenous NRG1 as well as PV targeted receptor knockout. Thus ketamine reactivation of adult visual cortical plasticity is mediated through rapid and sustained cortical disinhibition via downregulation of PV-specific NRG1 signaling. Our findings reveal the neural plasticity-based mechanism for ketamine-mediated functional recovery from adult amblyopia.Highlights○ Disinhibition of excitatory cells by ketamine occurs in a fast and sustained manner○ Ketamine evokes NRG1 downregulation and excitatory input loss to PV cells○ Ketamine induced plasticity is blocked by exogenous NRG1 or its receptor knockout○ PV inhibitory cells are the initial functional locus underlying ketamine’s effects


2007 ◽  
Vol 27 (5) ◽  
pp. 1631-1648 ◽  
Author(s):  
Igor Chernukhin ◽  
Shaharum Shamsuddin ◽  
Sung Yun Kang ◽  
Rosita Bergström ◽  
Yoo-Wook Kwon ◽  
...  

ABSTRACT CTCF is a transcription factor with highly versatile functions ranging from gene activation and repression to the regulation of insulator function and imprinting. Although many of these functions rely on CTCF-DNA interactions, it is an emerging realization that CTCF-dependent molecular processes involve CTCF interactions with other proteins. In this study, we report the association of a subpopulation of CTCF with the RNA polymerase II (Pol II) protein complex. We identified the largest subunit of Pol II (LS Pol II) as a protein significantly colocalizing with CTCF in the nucleus and specifically interacting with CTCF in vivo and in vitro. The role of CTCF as a link between DNA and LS Pol II has been reinforced by the observation that the association of LS Pol II with CTCF target sites in vivo depends on intact CTCF binding sequences. “Serial” chromatin immunoprecipitation (ChIP) analysis revealed that both CTCF and LS Pol II were present at the β-globin insulator in proliferating HD3 cells but not in differentiated globin synthesizing HD3 cells. Further, a single wild-type CTCF target site (N-Myc-CTCF), but not the mutant site deficient for CTCF binding, was sufficient to activate the transcription from the promoterless reporter gene in stably transfected cells. Finally, a ChIP-on-ChIP hybridization assay using microarrays of a library of CTCF target sites revealed that many intergenic CTCF target sequences interacted with both CTCF and LS Pol II. We discuss the possible implications of our observations with respect to plausible mechanisms of transcriptional regulation via a CTCF-mediated direct link of LS Pol II to the DNA.


Blood ◽  
2016 ◽  
Vol 127 (14) ◽  
pp. 1743-1751 ◽  
Author(s):  
Jesse W. Rowley ◽  
Stéphane Chappaz ◽  
Aurélie Corduan ◽  
Mark M. W. Chong ◽  
Robert Campbell ◽  
...  

Key Points Dicer1 deletion in MKs alters platelet miRNA and mRNA profiles. Dicer1-deficient platelets display increased integrins αIIb and β3 levels and enhanced in vitro and in vivo functional responses.


Blood ◽  
2016 ◽  
Vol 128 (14) ◽  
pp. 1845-1853 ◽  
Author(s):  
Michael Xiang ◽  
Haesook Kim ◽  
Vincent T. Ho ◽  
Sarah R. Walker ◽  
Michal Bar-Natan ◽  
...  

Key PointsThe FDA-approved drug atovaquone is a novel, clinically available inhibitor of STAT3 at standard human plasma concentrations. Atovaquone shows anticancer efficacy in vitro, in vivo, and in a retrospective study of AML patient outcomes after atovaquone treatment.


Sign in / Sign up

Export Citation Format

Share Document