scholarly journals Quantitative partition of the rhizosphere microbiota assembly processes

2020 ◽  
Author(s):  
Ning Ling ◽  
Chao Xue ◽  
Philippe Vandenkoornhuyse ◽  
Qirong Shen

AbstractThe soil microbial reservoir and plant recruitment are predominant forces determining microbiota assembly in rhizosphere (i.e. active and passive processes respectively), but to date, no straightforward method to evaluate the respective contribution of forces to the rhizospheric microbiota assembly rules is available. We propose herein a promising way to quantitatively partition the assembling forces of rhizosphere microbiota using ordination metrics. We anticipate that this new method can not only weight the plants individual contributions to microbiota assembly in rhizosphere, but can also indirectly provide a way to quantitatively evaluate soil health by the contribution from plant selection.

Author(s):  
Wenxing Li ◽  
Peihua Zhang ◽  
Hao Qiu ◽  
Cornelis A. M. Van Gestel ◽  
Willie J. G. M. Peijnenburg ◽  
...  

2021 ◽  
Vol 64 (1) ◽  
Author(s):  
Jianyu Li ◽  
Xin Zhao ◽  
Laura S. Bailey ◽  
Manasi N. Kamat ◽  
Kari B. Basso

AbstractThe biochemical composition of organic fertilizers largely determines their nutrient supply characteristics following soil application as well as their potential impact on soil microbial communities. Yet, limited information is available regarding the biochemical composition of organic fertilizers derived from different nutrient sources. Here, we qualitatively analyzed the presence and abundance of proteins, lipids, and metabolites in a liquid fish fertilizer (LFF) product and a type of granular organic fertilizer (GOF) commonly used in organic vegetable production, using liquid chromatography–tandem mass spectrometry (LC–MS/MS). Our results suggest that the presence and abundance of proteins, lipids, and metabolites differ greatly between GOF and LFF. The qualitative analysis shows LFF as a rich source of metabolites, while complex proteins and long-chain saturated fatty acids are dominant in GOF. The degree of biochemical composition complexity may help explain the varying impacts of different types of organic fertilizers on nutrient availability, soil health, and environmental quality.


2017 ◽  
Vol 45 (5) ◽  
pp. 1600458 ◽  
Author(s):  
Priyanka Khati ◽  
Anita Sharma ◽  
Saurabh Gangola ◽  
Rajeew Kumar ◽  
Pankaj Bhatt ◽  
...  

2019 ◽  
Vol 46 (7) ◽  
pp. 597 ◽  
Author(s):  
Johanna W.-H. Wong ◽  
Jonathan M. Plett

A major goal in agricultural research is to develop ‘elite’ crops with stronger, resilient root systems. Within this context, breeding practices have focussed on developing plant varieties that are, primarily, able to withstand pathogen attack and, secondarily, able to maximise plant productivity. Although great strides towards breeding disease-tolerant or -resistant root stocks have been made, this has come at a cost. Emerging studies in certain crop species suggest that domestication of crops, together with soil management practices aimed at improving plant yield, may hinder beneficial soil microbial association or reduce microbial diversity in soil. To achieve more sustainable management of agricultural lands, we must not only shift our soil management practices but also our breeding strategy to include contributions from beneficial microbes. For this latter point, we need to advance our understanding of how plants communicate with, and are able to differentiate between, microbes of different lifestyles. Here, we present a review of the key findings on belowground plant–microbial interactions that have been made over the past decade, with a specific focus on how plants and microbes communicate. We also discuss the currently unresolved questions in this area, and propose plausible ways to use currently available research and integrate fast-emerging ‘-omics’ technologies to tackle these questions. Combining past and developing research will enable the development of new crop varieties that will have new, value-added phenotypes belowground.


2020 ◽  
Author(s):  
Xin Shu ◽  
Yiran Zou ◽  
Liz Shaw ◽  
Lindsay Todman ◽  
Mark Tibbett ◽  
...  

<p>Cover crops are a contemporary tool to sustainably manage agricultural soils by boosting fertility, suppressing weeds and disease, and benefiting cash crop yields, thus securing future food supply. Due to the different chemical composition of crop residues from different plant families, we hypothesised that a mixture of cover crop residues may have a greater potential to improve soil health than the sum of the parts. Our experiment focused on the impact of four cover crops (clover, sunflower, radish and buckwheat) and their quaternary mixture on soil respiration and the soil microbial community in an 84-day microcosm experiment. On average adding cover crop residues significantly (P < 0.001) increased soil respiration from 29 to 343 µg C g<sup>-1</sup> h<sup>-1</sup> and microbial biomass from 18 to 60 µg C g<sup>-1</sup>, compared to the unamended control during 84 days’ incubation. Cover crop addition resulted in a significant (P < 0.001) alteration of the soil microbial community structure compared to that of the control. The quaternary mixture of cover crop residues significantly (P = 0.011) increased soil respiration rate by 23.79 µg C g<sup>-1</sup> h<sup>-1</sup> during the period 30 to 84 days after residue incorporation, compared to the average of the four individual residues. However, no significant difference in the size of the microbial biomass was found between the mixture and the average of the four individuals, indicating the mixture may invest resources which transit dormant microbial species into a metabolically active state and thus boost microbial respiration. Analysis of similarity of microbial community composition (ANOSIM) demonstrated the mixture significantly (P = 0.001) shifted microbial community structure away from buckwheat (R = 0.847), clover (R = 0.688), radish (R = 0.285) and sunflower (R = 0.785), respectively. This implies cover crop residues provide a niche specialization and differentiation on a selection of microbial communities that favour certain plant compounds. While applying cover crop residues has positive impacts on soil function, we found that applying a mixture of cover crop residues may provide greater potential to select for microorganisms or activate dormant microbial species which result in higher soil function. The outcome of this study will help seed suppliers to design, and farmers to select, novel cover crop mixtures which enhance soil function synergistically, leading to a greater potential to sustainably improve soil health.</p>


2019 ◽  
Vol 24 (1) ◽  
pp. 43
Author(s):  
Lily Ishak ◽  
Philip Hugh Brown

The role of microbial communities in maintaining soil health is mostly influenced by chemical condition of soil. Microbial communities vary in response to soil chemical factors. The contradictive results from previous findings emphasise that it is difficult to define a pattern of the influence of soil chemical factors on soil microbial diversity and activity. The aim of the study was to assess soil microbial responses to soil chemical factors in agricultural soils. Composite soil (Dermosol order) samples taken from 16 commercial crop sites in Bundaberg, Queensland, Australia, were chemically and biologically analysed. It was found that bacterial and fungal activity and diversity were significantly affected by soil EC, SOM and NO3-N content, but were not influenced by soil pH, CEC, and Ca:Mg ratio. The diversity of bacterial and fungal communities displayed a positive linear relationship with soil EC, whereas the activity and diversity of these two microbial groups and SOM displayed a significant quadratic relationship. The finding suggested that microbial community was predominantly influenced by SOM content.


2021 ◽  
Vol 3 (2) ◽  
pp. 26-36
Author(s):  
Hasrat Arjjumend ◽  
Konstantia Koutouki ◽  
Simon Neufeld

The use of excessive chemical fertilizers and pesticides have decreased soil microbial life and upset the balance between soil microbes and plants, negatively impacting plant nutrition, production and soil health. Biofertilizers hold the potential to revive soil biology and increase farmers’ current agricultural productivity, while at the same time contributing to the soil’s ability to produce more in the future. This article is part of a larger Université de Montréal study conducted with the support of Mitacs and Earth Alive Clean Technologies. The responses of farmers using and not using biofertilizers, manufacturers or suppliers of biofertilizers, and research and development scientists are captured to build cases of how microbial products (biologicals) prove to be advantageous when applied in field crops. The agronomic advantage of biofertilizers compared to conventional chemical fertilizers is well proved biologically and in economic terms. The farmers interviewed stated their preference of biofertilizers over chemical fertilizers. However, production and distribution of biofertilizers are inadequate compared to the demand for them. Studies need to be pursued to understand reasons for the supply gaps and the slow growth of biofertilizers in the agriculture sector of India and methods of linking them to farmers’ preferences in order to advance protections of soil and plants in India.


2021 ◽  
Author(s):  
Irene Cordero ◽  
Ainara Leizeaga ◽  
Lettice C Hicks ◽  
Johannes Rousk ◽  
Richard D Bardgett

Soil microbial communities play a pivotal role in regulating ecosystem functioning but they are increasingly threatened by human-driven perturbations, including climate extremes, which are predicted to increase in frequency and intensity with climate change. It has been demonstrated that soil microbial communities are sensitive to climate extremes, such as drought, and that effects can be long-lasting. However, considerable uncertainties remain concerning the response of soil microbial communities to increases in the intensity and frequency of climate extremes, and their potential to trigger transitions to alternative, and potentially deleterious, taxonomic and functional states. Here we demonstrate that extreme, frequent drought induces a shift to an alternative soil microbial state characterised by strongly altered bacterial and fungal community structure of reduced complexity and functionality. Moreover, we found that this drought-induced alternative microbial state persisted after returning soil to its previous moisture status. However, bacterial communities were able to adapt by increasing their growth capacity, despite being of reduced diversity. Abrupt transitions to alternative states are well documented in aquatic and terrestrial plant communities in response to human-induced perturbations, including climate extremes. Our results provide experimental evidence that such transitions also occur in soil microbial communities in response to extreme drought with potentially deleterious consequences for soil health.


Author(s):  
L. K. Baishya ◽  
Temjenna Jamir ◽  
N. Walling ◽  
D. J. Rajkhowa

Three-year (2014-2016) field experiment was conducted for evaluation of maize (Zea mays L.) based intercropping system for productivity, profitability, energy budgeting and soil health in Eastern Himalayan region. The treatments consisted of four sole crop viz. maize, soybean, groundnut, cowpea and six intercropping treatments viz. maize + groundnut (1:1), maize + soybean (1:1), maize + cowpea (1:1) and strip cropping of maize + groundnut (4:4), maize + soybean (4:4), maize + cowpea (4:4). The highest maize equivalent yield (10.2 t ha-1) was recorded in maize + groundnut cropping system (1:1) followed by maize + soybean (1:1) with 8.9 t ha-1. The highest SNBC (soil microbial biomass carbon) (66.2 mg g-1) and organic carbon (1.3%) were recorded with the cultivation of cowpea as a sole or intercrop. Strip cropping system, maize + cowpea (4:4) recorded the highest soil available N, P2O5 and K2O kg ha-1, highest energy efficiency (12.53) and energy productivity 955.01 g MJ-1


2018 ◽  
Vol 10 (8) ◽  
pp. 2718 ◽  
Author(s):  
Dhruba Dhakal ◽  
M. Islam

Planting grass-legume mixtures may be a good option to improve soil health in addition to increased forage productivity, improved forage nutritive value, and net farm profit in a hay production system. A field experiment was conducted from 2011 to 2014 at Lingle, Wyoming to evaluate soil microbial biomass under different seeding proportions of two forage grasses (meadow bromegrass, Bromus biebersteinii Roem. & Schult.; and orchardgrass, Dactylis glomerata L.) and one legume (alfalfa, Medicago sativa L.). Nine treatments included monoculture grass, monoculture legume, one grass and one legume mixture, two grasses and one legume mixture, and a control (not seeded with grass or legume). Monoculture grass received either no nitrogen (N) or N fertilizer (150 kg N ha−1 year−1 as urea) whereas monoculture legume, grass-legume mixtures, and control plots received no N fertilizer. The study was laid out as a randomized complete block design with three replications. The plots were harvested 3–4 times each year after the establishment year. Soil samples were collected and analyzed for microbial biomass using phospholipid fatty acid (PLFA) analysis at the end of May in 2013 and 2014. Soil samples were also analyzed for mineralizable carbon (C) and N in 2013 and 2014. The total above-ground plant biomass was higher in 50–50% mixture of grass and alfalfa than monoculture alfalfa and monoculture grass (with and without N fertilizer) during the entire study period. The application of N fertilizer to the grass hay production system had little effect on improving mineralizable soil C, N, and soil microbial biomass. However, grass-legume mixture without N fertilizer had great effect on improvement of mineralizable soil C and N, and total, bacterial, and actinomycetes microbial biomass in soil. The 50–50% mixture of grass and alfalfa performed consistently well and can be considered to use in Wyoming conditions for improving soil health and forage productivity.


Sign in / Sign up

Export Citation Format

Share Document