scholarly journals Criticality as a measure of developing proteinopathy in engineered human neural networks

2020 ◽  
Author(s):  
Vibeke Devold Valderhaug ◽  
Kristine Heiney ◽  
Ola Huse Ramstad ◽  
Geir Braathen ◽  
Wei-Li Kuan ◽  
...  

A patterned spread of proteinopathy represents a common characteristic of many neurodegenerative diseases. In Parkinson's disease (PD), misfolded forms of alpha-synuclein proteins aggregate and accumulate in hallmark pathological inclusions termed Lewy bodies and Lewy neurites, which seems to affect selectively vulnerable neuronal populations and propagate within interconnected neuronal networks. Research findings suggest that these proteinopathic inclusions are present at very early timepoints in disease development, even before strong behavioural symptoms of dysfunction arise, but that these underlying pathologies might be masked by homeostatic processes working to maintain the function of the degenerating neural circuits. This study investigates whether inducing the PD-related alpha-synuclein pathology in engineered human neural networks can be associated with changes in network function, and particularly with network criticality states. Self-organised criticality represents the critical point between resilience against perturbation and adaptational flexibility, which appears to be a functional trait in self-organising neural networks, both in vitro and in vivo. By monitoring the developing neural network activity through the use of multielectrode arrays (MEAs) for a period of three weeks following proteinopathy induction, we show that although this developing pathology is not clearly manifest in standard measurements of network function, it may be discerned by differences in network criticality states.

2021 ◽  
Author(s):  
Maryna Psol ◽  
Sofia Guerin Darvas ◽  
Kristian Leite ◽  
Sameehan U Mahajani ◽  
Mathias Bähr ◽  
...  

Abstract ß-Synuclein (ß-Syn) has long been considered to be an attenuator for the neuropathological effects caused by the Parkinson’s disease-related α-Synuclein (α-Syn) protein. However, recent studies demonstrated that overabundant ß-Syn can form aggregates and induce neurodegeneration in CNS neurons in vitro and in vivo, albeit at a slower pace as compared to α-Syn. Here we demonstrate that ß-Syn mutants V70M, detected in a sporadic case of Dementia with Lewy Bodies (DLB), and P123H, detected in a familial case of DLB, robustly aggravate the neurotoxic potential of ß-Syn. Intriguingly, the two mutations trigger mutually exclusive pathways. ß-Syn V70M enhances morphological mitochondrial deterioration and degeneration of dopaminergic and non-dopaminergic neurons, but has no influence on neuronal network activity. Conversely, ß-Syn P123H silences neuronal network activity, but does not aggravate neurodegeneration. ß-Syn WT, V70M and P123H formed proteinase K (PK) resistant intracellular fibrils within neurons, albeit with less stable C-termini as compared to α-Syn. Under cell free conditions, ß-Syn V70M demonstrated a much slower pace of fibril formation as compared to WT ß-Syn, and P123H fibrils present with a unique phenotype characterized by large numbers of short, truncated fibrils. Thus, it is possible that V70M and P123H cause structural alterations in ß-Syn, that are linked to their distinct neuropathological profiles. The extent of the lesions caused by these neuropathological profiles is almost identical to that of overabundant α-Syn, and thus likely to be directly involved into etiology of DLB. Over all, this study provides insights into distinct disease mechanisms caused by mutations of ß-Syn.


2020 ◽  
Author(s):  
Jürgen Graf ◽  
Chuanqiang Zhang ◽  
Stephan Lawrence Marguet ◽  
Tanja Herrmann ◽  
Tom Flossmann ◽  
...  

AbstractNKCC1 is the primary transporter mediating chloride uptake in immature principal neurons, but its role in the development of in vivo network dynamics and cognitive abilities remains unknown. Here, we address the function of NKCC1 in developing mice using electrophysiological, optical and behavioral approaches. We report that NKCC1 deletion from telencephalic glutamatergic neurons decreases in-vitro excitatory GABA actions and impairs neuronal synchrony in neonatal hippocampal brain slices. In vivo, it has a minor impact on correlated spontaneous activity in the hippocampus and does not affect network activity in the intact visual cortex. Moreover, long-term effects of the developmental NKCC1 deletion on synaptic maturation, network dynamics and behavioral performance are subtle. Our data reveal a neural network function of depolarizing GABA in the hippocampus in vivo, but challenge the hypothesis that NKCC1 is essential for major aspects of hippocampal development.


2020 ◽  
Author(s):  
Rachel Underwood ◽  
Bing Wang ◽  
Aneesh Pathak ◽  
Laura Volpicelli-Daley ◽  
Talene A. Yacoubian

SUMMARYParkinson’s disease and Dementia with Lewy Bodies are two common neurodegenerative disorders marked by proteinaceous aggregates composed primarily of the protein α-synuclein. α-Synuclein is hypothesized to have prion-like properties, by which misfolded α-synuclein induces the pathological aggregation of endogenous α-synuclein and neuronal loss. Rab27a and Rab27b are two highly homologous Rab GTPases that regulate α-synuclein secretion, clearance, and toxicity in vitro. In this study, we tested the impact of Rab27a/b on the transmission of pathogenic α-synuclein. Double knockout of both Rab27 isoforms eliminated α-synuclein aggregation and neuronal toxicity in primary cultured neurons exposed to fibrillary α-synuclein. In vivo, Rab27 double knockout mice lacked fibril-induced α-synuclein inclusions, dopaminergic neuron loss, and behavioral deficits seen in wildtype mice with fibril-induced inclusions. Studies using AlexaFluor488-labeled α-synuclein fibrils revealed that Rab27a/b knockout prevented α-synuclein internalization without affecting bulk endocytosis. Rab27a/b knockout also blocked the cell-to-cell spread of α-synuclein pathology in multifluidic, multichambered devices. This study provides critical insight into the role of Rab GTPases in Parkinson’s disease and identifies Rab27s as key players in the progression of synucleinopathies.


2021 ◽  
Vol 118 (14) ◽  
pp. e2014784118
Author(s):  
Jürgen Graf ◽  
Chuanqiang Zhang ◽  
Stephan Lawrence Marguet ◽  
Tanja Herrmann ◽  
Tom Flossmann ◽  
...  

NKCC1 is the primary transporter mediating chloride uptake in immature principal neurons, but its role in the development of in vivo network dynamics and cognitive abilities remains unknown. Here, we address the function of NKCC1 in developing mice using electrophysiological, optical, and behavioral approaches. We report that NKCC1 deletion from telencephalic glutamatergic neurons decreases in vitro excitatory actions of γ-aminobutyric acid (GABA) and impairs neuronal synchrony in neonatal hippocampal brain slices. In vivo, it has a minor impact on correlated spontaneous activity in the hippocampus and does not affect network activity in the intact visual cortex. Moreover, long-term effects of the developmental NKCC1 deletion on synaptic maturation, network dynamics, and behavioral performance are subtle. Our data reveal a neural network function of NKCC1 in hippocampal glutamatergic neurons in vivo, but challenge the hypothesis that NKCC1 is essential for major aspects of hippocampal development.


2021 ◽  
Author(s):  
Yun Fan ◽  
Yunpeng Sun ◽  
Wenbo Yu ◽  
Youqi Tao ◽  
Wencheng Xia ◽  
...  

alpha-Synuclein (alpha-syn) fibrillar aggregates are the major component of Lewy bodies and Lewy neurites presenting as the pathology hallmark of Parkinson's disease (PD). Studies have shown that alpha-syn is potential to form different conformational fibrils associated with different synucleinopathies, but whether the conformation of alpha-syn fibrils changes in different phases of related diseases is to be explored. Here, we amplified alpha-syn aggregates from the cerebrospinal fluid (CSF) of preclinical (pre-PD) and late-stage postmortem PD (post-PD) patients. Our results show that compared to the CSF of pre-PD, that of post-PD is markedly stronger in seeding in vitro alpha-syn aggregation, and the amplified fibrils are more potent in inducing endogenous alpha-syn aggregation in neurons. Cryo-electron microscopic structures further reveal that the difference between the pre-PD- and post-PD-derived fibrils lies on a minor polymorph which in the pre-PD fibrils is morphologically straight, while in the post-PD fibrils represents a single protofilament assembled by a distinctive conformation of alpha-syn. Our work demonstrates structural and pathological differences between pre-PD and post-PD alpha-syn aggregation and suggests potential alteration of alpha-syn fibrils during the progression of PD clinical phases.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Shunsuke Koga ◽  
Hiroaki Sekiya ◽  
Naveen Kondru ◽  
Owen A. Ross ◽  
Dennis W. Dickson

AbstractSynucleinopathies are clinically and pathologically heterogeneous disorders characterized by pathologic aggregates of α-synuclein in neurons and glia, in the form of Lewy bodies, Lewy neurites, neuronal cytoplasmic inclusions, and glial cytoplasmic inclusions. Synucleinopathies can be divided into two major disease entities: Lewy body disease and multiple system atrophy (MSA). Common clinical presentations of Lewy body disease are Parkinson’s disease (PD), PD with dementia, and dementia with Lewy bodies (DLB), while MSA has two major clinical subtypes, MSA with predominant cerebellar ataxia and MSA with predominant parkinsonism. There are currently no disease-modifying therapies for the synucleinopathies, but information obtained from molecular genetics and models that explore mechanisms of α-synuclein conversion to pathologic oligomers and insoluble fibrils offer hope for eventual therapies. It remains unclear how α-synuclein can be associated with distinct cellular pathologies (e.g., Lewy bodies and glial cytoplasmic inclusions) and what factors determine neuroanatomical and cell type vulnerability. Accumulating evidence from in vitro and in vivo experiments suggests that α-synuclein species derived from Lewy body disease and MSA are distinct “strains” having different seeding properties. Recent advancements in in vitro seeding assays, such as real-time quaking-induced conversion (RT-QuIC) and protein misfolding cyclic amplification (PMCA), not only demonstrate distinct seeding activity in the synucleinopathies, but also offer exciting opportunities for molecular diagnosis using readily accessible peripheral tissue samples. Cryogenic electron microscopy (cryo-EM) structural studies of α-synuclein derived from recombinant or brain-derived filaments provide new insight into mechanisms of seeding in synucleinopathies. In this review, we describe clinical, genetic and neuropathologic features of synucleinopathies, including a discussion of the evolution of classification and staging of Lewy body disease. We also provide a brief discussion on proposed mechanisms of Lewy body formation, as well as evidence supporting the existence of distinct α-synuclein strains in Lewy body disease and MSA.


2021 ◽  
Author(s):  
Shunsuke Koga ◽  
Hiroaki Sekiya ◽  
Naveen Kondru ◽  
Owen Ross ◽  
Dennis Dickson

Abstract Synucleinopathies are clinically and pathologically heterogeneous disorders characterized by pathologic aggregates of α-synuclein in neurons and glia, in the form of Lewy bodies, Lewy neurites, neuronal cytoplasmic inclusions, and glial cytoplasmic inclusions (GCIs). Synucleinopathies can be divided into two major disease entities: Lewy body disease (LBD) and multiple system atrophy (MSA). Common clinical presentations of LBD are Parkinson's disease (PD), PD with dementia (PDD), and dementia with Lewy bodies (DLB), while MSA has two major clinical subtypes, MSA with predominant cerebellar ataxia (MSA-C) and MSA with predominant parkinsonism (MSA-P). There are currently no disease-modifying therapies for the synucleinopathies, but elucidation of genetics and mechanisms of α-synuclein conversion to pathologic oligomers and insoluble fibrils offer hope for eventual therapies. It remains unclear how α-synuclein can be associated with distinct cellular pathologies (e.g., Lewy bodies and GCI) and what factors determine neuroanatomical and cell type vulnerability. Accumulating evidence from in vitro and in vivo experiments suggests that α-synuclein species derived from LBD and MSA are distinct "strains" having different seeding properties. Recent advancements in in vitro seeding assays, such as real-time quaking-induced conversion (RT-QuIC) and protein misfolding cyclic amplification (PMCA), not only demonstrate distinct seeding activity in the synucleinopathies, but also offer exciting opportunities for molecular diagnosis using readily accessible peripheral tissues. Cryogenic electron microscopy (cryo-EM) structural studies of α-synuclein derived from recombinant or brain-derived filaments provide new insight into mechanisms of seeding in synucleinopathies. In this review, we describe clinical, genetic and neuropathologic features of synucleinopathies, including a review of classification and staging schemes for LBD. We also review evidence supporting the existence of distinct α-synuclein strains in LBD and MSA.


2020 ◽  
Author(s):  
Antonio Dominguez-Meijide ◽  
Valeria Parrales ◽  
Eftychia Vasili ◽  
Florencia González-Lizárraga ◽  
Annekatrin König ◽  
...  

AbstractParkinson’s disease (PD) and dementia with Lewy bodies (DLB) are neurodegenerative disorders characterized by the misfolding and aggregation of alpha-synuclein (aSyn). Doxycycline, a tetracyclic antibiotic shows neuroprotective effects, initially proposed to be due to its anti-inflammatory properties. More recently, an additional mechanism by which doxycycline may exert its neuroprotective effects has been proposed as it has been shown that it inhibits amyloid aggregation. Here, we studied the effects of doxycycline on aSyn aggregation in vivo, in vitro and in a cell free system using real-time quaking induced conversion (RT-QuiC). Our results show that doxycycline decreases the number and size of aSyn aggregates in cells. In addition, doxycycline inhibits the aggregation and seeding of recombinant aSyn, and attenuates the production of mitochondrial-derived reactive oxygen species. Finally, we found doxycycline induces a cellular redistribution of the aggregates in an animal model of PD that is associated with a recovery of dopaminergic function. In summary, we provide strong evidence that doxycycline treatment may be an effective strategy against synucleinopathies.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Rachel Underwood ◽  
Mary Gannon ◽  
Aneesh Pathak ◽  
Navya Kapa ◽  
Sidhanth Chandra ◽  
...  

AbstractAlpha-synuclein (αsyn) is the key component of proteinaceous aggregates termed Lewy Bodies that pathologically define a group of disorders known as synucleinopathies, including Parkinson’s Disease (PD) and Dementia with Lewy Bodies. αSyn is hypothesized to misfold and spread throughout the brain in a prion-like fashion. Transmission of αsyn necessitates the release of misfolded αsyn from one cell and the uptake of that αsyn by another, in which it can template the misfolding of endogenous αsyn upon cell internalization. 14-3-3 proteins are a family of highly expressed brain proteins that are neuroprotective in multiple PD models. We have previously shown that 14-3-3θ acts as a chaperone to reduce αsyn aggregation, cell-to-cell transmission, and neurotoxicity in the in vitro pre-formed fibril (PFF) model. In this study, we expanded our studies to test the impact of 14-3-3s on αsyn toxicity in the in vivo αsyn PFF model. We used both transgenic expression models and adenovirus associated virus (AAV)-mediated expression to examine whether 14-3-3 manipulation impacts behavioral deficits, αsyn aggregation, and neuronal counts in the PFF model. 14-3-3θ transgene overexpression in cortical and amygdala regions rescued social dominance deficits induced by PFFs at 6 months post injection, whereas 14-3-3 inhibition by transgene expression of the competitive 14-3-3 peptide inhibitor difopein in the cortex and amygdala accelerated social dominance deficits. The behavioral rescue by 14-3-3θ overexpression was associated with delayed αsyn aggregation induced by PFFs in these brain regions. Conversely, 14-3-3 inhibition by difopein in the cortex and amygdala accelerated αsyn aggregation and reduction in NECAB1-positive neuron counts induced by PFFs. 14-3-3θ overexpression by AAV in the substantia nigra (SN) also delayed αsyn aggregation in the SN and partially rescued PFF-induced reduction in tyrosine hydroxylase (TH)-positive dopaminergic cells in the SN. 14-3-3 inhibition in the SN accelerated nigral αsyn aggregation and enhanced PFF-induced reduction in TH-positive dopaminergic cells. These data indicate a neuroprotective role for 14-3-3θ against αsyn toxicity in vivo.


Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 580 ◽  
Author(s):  
Janett Köppen ◽  
Anja Schulze ◽  
Lisa Machner ◽  
Michael Wermann ◽  
Rico Eichentopf ◽  
...  

Alzheimer’s disease (AD) and Parkinson’s disease (PD), including dementia with Lewy bodies (DLB), account for the majority of dementia cases worldwide. Interestingly, a significant number of patients have clinical and neuropathological features of both AD and PD, i.e., the presence of amyloid deposits and Lewy bodies in the neocortex. The identification of α-synuclein peptides in amyloid plaques in DLB brain led to the hypothesis that both peptides mutually interact with each other to facilitate neurodegeneration. In this article, we report the influence of Aβ(1–42) and pGlu-Aβ(3–42) on the aggregation of α-synuclein in vitro. The aggregation of human recombinant α-synuclein was investigated using thioflavin-T fluorescence assay. Fibrils were investigated by means of antibody conjugated immunogold followed by transmission electron microscopy (TEM). Our data demonstrate a significantly increased aggregation propensity of α-synuclein in the presence of minor concentrations of Aβ(1–42) and pGlu-Aβ(3–42) for the first time, but without effect on toxicity on mouse primary neurons. The analysis of the composition of the fibrils by TEM combined with immunogold labeling of the peptides revealed an interaction of α-synuclein and Aβ in vitro, leading to an accelerated fibril formation. The analysis of kinetic data suggests that significantly enhanced nucleus formation accounts for this effect. Additionally, co-occurrence of α-synuclein and Aβ and pGlu-Aβ, respectively, under pathological conditions was confirmed in vivo by double immunofluorescent labelings in brains of aged transgenic mice with amyloid pathology. These observations imply a cross-talk of the amyloid peptides α-synuclein and Aβ species in neurodegeneration. Such effects might be responsible for the co-occurrence of Lewy bodies and plaques in many dementia cases.


Sign in / Sign up

Export Citation Format

Share Document