scholarly journals The importance of the timing of quarantine measures before symptom onset to prevent COVID-19 outbreaks - illustrated by Hong Kong’s intervention model

Author(s):  
Hsiang-Yu Yuan ◽  
Guiyuan Han ◽  
Hsiangkuo Yuan ◽  
Susanne Pfeiffer ◽  
Axiu Mao ◽  
...  

AbstractBackgroundThe rapid expansion of the current COVID-19 outbreak has caused a global pandemic but how quarantine-based measures can prevent or suppress an outbreak without other more intrusive interventions has not yet been determined. Hong Kong had a massive influx of travellers from mainland China, where the outbreak began, during the early expansion period coinciding with the Lunar New Year festival; however, the spread of the virus has been relatively limited even without imposing severe control measures, such as a full city lockdown. Understanding how quarantine measures in Hong Kong were effective in limiting community spread can provide us with valuable insights into how to suppress an outbreak. However, challenges exist in evaluating the effects of quarantine on COVID-19 transmission dynamics in Hong Kong due to the fact that the effects of border control have to be also taken into account.MethodsWe have developed a two-layered susceptible-exposed-infectious-quarantined-recovered (SEIQR) meta-population model which can estimate the effects of quarantine on virus transmissibility after stratifying infections into imported and subsequent community infections, in a region closely connected to the outbreak’s source. We fitted the model to both imported and local confirmed case data with symptom onset from 18 January to 29 February 2020 in Hong Kong, together with daily transportation data and the transmission dynamics of COVID-19 from Wuhan and mainland China. After model fitting, epidemiological parameters and the timing of the start of quarantine for infected cases were estimated.ResultsThe model estimated that the reproduction number of COVID-19 in Hong Kong was 0.76 (95% CI, 0.66 to 0.86), achieved through quarantining infected cases −0.57 days (95% CI, −4.21 − 3.88) relative to symptom onset, with an estimated incubation time of 5.43 days (95% CI, 1.30 − 9.47). However, if delaying the quarantine start by more than 1.43 days, the reproduction number would be greater than one, making community spread more likely. The model also determined the timing of the start of quarantine necessary in order to suppress an outbreak in the presence of population immunity.ConclusionThe results suggest that the early quarantine for infected cases before symptom onset is a key factor to prevent COVID-19 outbreak.

Author(s):  
Hsiang-Yu Yuan ◽  
Axiu Mao ◽  
Guiyuan Han ◽  
Hsiangkuo Yuan ◽  
Dirk Pfeiffer

AbstractThe rapid expansion of COVID-19 has caused a global pandemic. Although quarantine measures have been used widely, the critical steps among them to suppress the outbreak without a huge social-economic loss remain unknown. Hong Kong, unlike other regions in the world, had a massive number of travellers from Mainland China during the early expansion period, and yet the spread of virus has been relatively limited. Understanding the effect of control measures to reduce the transmission in Hong Kong can improve the control of the virus spreading.We have developed a susceptible-exposed-infectious-quarantined-recovered (SEIQR) meta-population model that can stratify the infections into imported and subsequent local infections, and therefore to obtain the control effects on transmissibility in a region with many imported cases. We fitted the model to both imported and local confirmed cases with symptom onset from 18 January to 29 February 2020 in Hong Kong with daily transportation data and the transmission dynamics from Wuhan and Mainland China.The model estimated that the reproductive number was dropped from 2.32 to 0.76 (95% CI, 0.66 to 0.86) after an infected case was estimated to be quarantined half day before the symptom onset, corresponding to the incubation time of 5.43 days (95% CI, 1.30-9.47). If the quarantine happened about one day after the onset, community spread would be likely to occur, indicated by the reproductive number larger than one. The results suggest that the early quarantine for a suspected case before the symptom onset is a key factor to suppress COVID-19.


BMJ Open ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. e043411
Author(s):  
Lin Zhao ◽  
Dan Feng ◽  
Run-Ze Ye ◽  
Hai-Tao Wang ◽  
Yu-Hao Zhou ◽  
...  

ObjectiveTo compare the epidemiological characteristics and transmission dynamics in relation to interventions against the COVID-19 and severe acute respiratory syndrome (SARS) outbreak in mainland China.DesignComparative study based on a unique data set of COVID-19 and SARS.SettingOutbreak in mainland China.ParticipantsThe final database included 82 858 confirmed cases of COVID-19 and 5327 cases of SARS.MethodsWe brought together all existing data sources and integrated them into a comprehensive data set. Individual information on age, sex, occupation, residence location, date of illness onset, date of diagnosis and clinical outcome was extracted. Control measures deployed in mainland China were collected. We compared the epidemiological and spatial characteristics of COVID-19 and SARS. We estimated the effective reproduction number to explore differences in transmission dynamics and intervention effects.ResultsCompared with SARS, COVID-19 affected more extensive areas (1668 vs 230 counties) within a shorter time (101 vs 193 days) and had higher attack rate (61.8 vs 4.0 per million persons). The COVID-19 outbreak had only one epidemic peak and one epicentre (Hubei Province), while the SARS outbreak resulted in two peaks and two epicentres (Guangdong Province and Beijing). SARS-CoV-2 was more likely to infect older people (median age of 52 years), while SARS-CoV tended to infect young adults (median age of 34 years). The case fatality rate (CFR) of either disease increased with age, but the CFR of COVID-19 was significantly lower than that of SARS (5.6% vs 6.4%). The trajectory of effective reproduction number dynamically changed in relation to interventions, which fell below 1 within 2 months for COVID-19 and within 5.5 months for SARS.ConclusionsChina has taken more prompt and effective responses to combat COVID-19 by learning lessons from SARS, providing us with some epidemiological clues to control the ongoing COVID-19 pandemic worldwide.


Author(s):  
Tao Liu ◽  
Jianxiong Hu ◽  
Jianpeng Xiao ◽  
Guanhao He ◽  
Min Kang ◽  
...  

ABSTRACTRationaleSeveral studies have estimated basic production number of novel coronavirus pneumonia (NCP). However, the time-varying transmission dynamics of NCP during the outbreak remain unclear.ObjectivesWe aimed to estimate the basic and time-varying transmission dynamics of NCP across China, and compared them with SARS.MethodsData on NCP cases by February 7, 2020 were collected from epidemiological investigations or official websites. Data on severe acute respiratory syndrome (SARS) cases in Guangdong Province, Beijing and Hong Kong during 2002-2003 were also obtained. We estimated the doubling time, basic reproduction number (R0) and time-varying reproduction number (Rt) of NCP and SARS.Measurements and main resultsAs of February 7, 2020, 34,598 NCP cases were identified in China, and daily confirmed cases decreased after February 4. The doubling time of NCP nationwide was 2.4 days which was shorter than that of SARS in Guangdong (14.3 days), Hong Kong (5.7 days) and Beijing (12.4 days). The R0 of NCP cases nationwide and in Wuhan were 4.5 and 4.4 respectively, which were higher than R0 of SARS in Guangdong (R0=2.3), Hongkong (R0=2.3), and Beijing (R0=2.6). The Rt for NCP continuously decreased especially after January 16 nationwide and in Wuhan. The R0 for secondary NCP cases in Guangdong was 0.6, and the Rt values were less than 1 during the epidemic.ConclusionsNCP may have a higher transmissibility than SARS, and the efforts of containing the outbreak are effective. However, the efforts are needed to persist in for reducing time-varying reproduction number below one.At a Glance CommentaryScientific Knowledge on the SubjectSince December 29, 2019, pneumonia infection with 2019-nCoV, now named as Novel Coronavirus Pneumonia (NCP), occurred in Wuhan, Hubei Province, China. The disease has rapidly spread from Wuhan to other areas. As a novel virus, the time-varying transmission dynamics of NCP remain unclear, and it is also important to compare it with SARS.What This Study Adds to the FieldWe compared the transmission dynamics of NCP with SARS, and found that NCP has a higher transmissibility than SARS. Time-varying production number indicates that rigorous control measures taken by governments are effective across China, and persistent efforts are needed to be taken for reducing instantaneous reproduction number below one.


Author(s):  
Shu Chen ◽  
Lei Guo ◽  
Taghred Alghaith ◽  
Di Dong ◽  
Mohammed Alluhidan ◽  
...  

Aim: Many governments in East and Southeast Asia responded promptly and effectively at the onset of the COVID-19 pandemic. Synthesizing and analyzing these responses is vital for disease control evidence-based policymaking. Methods: An extensive review of COVID-19 control measures was conducted in selected Asian countries and subregions, including Mainland China, Hong Kong, Taiwan, South Korea, Singapore, Japan, and Vietnam from 1 January to 30 May 2020. Control measures were categorized into administrative, public health, and health system measures. To evaluate the stringency and timeliness of responses, we developed two indices: the Initial Response Index (IRI) and the Modified Stringency Index (MSI), which builds on the Oxford COVID-19 Government Response Tracker (OxCGRT). Results: Comprehensive administrative, public health, and health system control measures were implemented at the onset of the outbreak. Despite variations in package components, the stringency of control measures across the study sites increased with the acceleration of the outbreak, with public health control measures implemented the most stringently. Variations in daily average MSI scores are observed, with Mainland China scoring the highest (74.2), followed by Singapore (67.4), Vietnam (66.8), Hong Kong (66.2), South Korea (62.3), Taiwan (52.1), and Japan (50.3). Variations in IRI scores depicting timeliness were higher: Hong Kong, Taiwan, Vietnam, and Singapore acted faster (IRI > 50.0), while Japan (42.4) and Mainland China (4.2) followed. Conclusions: Timely setting of stringency of the control measures, especially public health measures, at dynamically high levels is key to optimally controlling outbreaks.


2020 ◽  
Vol 49 (4) ◽  
pp. 1096-1105 ◽  
Author(s):  
Christopher K C Lai ◽  
Rita W Y Ng ◽  
Martin C S Wong ◽  
Ka Chun Chong ◽  
Yun Kit Yeoh ◽  
...  

Abstract Background Hong Kong (HK) is a densely populated city near the epicentre of the coronavirus disease 2019 (COVID-19) outbreak. Stringent border control together with aggressive case finding, contact tracing, social distancing and quarantine measures were implemented to halt the importation and spread of the virus. Methods We performed an epidemiological study using government information covering the first 100 confirmed cases to examine the epidemic curve, incidence, clusters, reproduction number (Rt), incubation period and time to containment. Results A total of 93 of the 100 cases were HK residents (6 infected in Mainland China, 10 on the Diamond Princess Cruise). Seven were visitors infected in Mainland China before entering HK. The majority (76%) were aged ≥45 years, and the incidence increased with age (P < 0.001). Escalation of border control measures correlated with a decrease in the proportion (62.5% to 0%) of cases imported from Mainland China, and a reduction in Rt (1.07 to 0.75). The median incubation period was 4.2 days [95% confidence interval (CI), 4.0–4.5; 5th and 95th percentiles: 1.3 and 14.0). Most clusters with identifiable epidemiological links were households involving 2–4 people. Three medium-spreading events were identified: two from New Year gatherings (6–11 people), and another from environmental contamination of a worship hall (12 people). Despite intensified contact tracing, containment was delayed in 78.9% of cases (mean = 5.96 days, range = 0–24 days). An unusual transmission in a multi-storey building via faulty toilet plumbing was suspected with >100 residents evacuated overnight. Our analysis indicated that faulty plumbing was unlikely to be the source of this transmission. Conclusion Timely stringent containment policies minimized the importation and transmission of COVID-19 in HK.


2020 ◽  
Vol 5 ◽  
pp. 91
Author(s):  
Yung-Wai Desmond Chan ◽  
Stefan Flasche ◽  
Tin-Long Terence Lam ◽  
Mei-Hung Joanna Leung ◽  
Miu-Ling Wong ◽  
...  

Background: The outbreak of coronavirus disease 2019 (COVID-19) started in Wuhan, China in late December 2019, and subsequently became a pandemic. Hong Kong had implemented a series of control measures since January 2020, including enhanced surveillance, isolation and quarantine, border control and social distancing. Hong Kong recorded its first case on 23 January 2020, who was a visitor from Wuhan. We analysed the surveillance data of COVID-19 to understand the transmission dynamics and epidemiology in Hong Kong. Methods: We constructed the epidemic curve of daily COVID-19 incidence from 23 January to 6 April 2020 and estimated the time-varying reproduction number (Rt) with the R package EpiEstim, with serial interval computed from local data. We described the demographic and epidemiological characteristics of reported cases. We computed weekly incidence by age and residential district to understand the spatial and temporal transmission of the disease. Results: COVID-19 disease in Hong Kong was characterised with local cases and clusters detected after two waves of importations, first in late January (week 4 to 6) and the second one in early March (week 9 to 10). The Rt increased to approximately 2 95% credible interval (CI): 0.3-3.3) and approximately 1 (95%CI: 0.2-1.7), respectively, following these importations; it decreased to below 1 afterwards from weeks 11 to 13, which coincided with the implementation, modification and intensification of different control measures. Compared to local cases, imported cases were younger (mean age: 52 years among local cases vs 35 years among imported cases), had a lower proportion of underlying disease (9% vs 5%) and severe outcome (13% vs 5%). Cases were recorded in all districts but the incidence was highest in those in the Hong Kong Island region. Conclusions: Stringent and sustained public health measures at population level could contain the COVID-19 disease at a relatively low level.


2020 ◽  
Vol 28 (03) ◽  
pp. 543-560 ◽  
Author(s):  
LIUYONG PANG ◽  
SANHONG LIU ◽  
XINAN ZHANG ◽  
TIANHAI TIAN ◽  
ZHONG ZHAO

In December 2019, a novel coronavirus, SARS-COV-2, was identified among patients in Wuhan, China. Two strict control measures, i.e., putting Wuhan on lockdown and taking strict quarantine rule, were carried out to contain the spread of COVID-19. Based on the different control measures, we divided the transmission process of COVID-19 into three stages. An SEIHR model was established to describe the transmission dynamics and was applied to fit the published data on the confirmed cases of Wuhan city from December 31, 2019 to March 25, 2020 to deduce the time when the first patient with COVID-19 appeared. The basic reproduction number was estimated in the first stage to demonstrate the number of secondary infectious cases generated by an average infectious case in the absence of policy intervention. The effective reproduction numbers in second and third stages were estimated to evaluate the effects of the two strict control measures. In addition, sensitivity analysis of the reproduction number according to model parameters was executed to demonstrate the effect of the control measures for containing the spread of COVID-19. Finally, the numerical calculation method was applied to investigate the influence of the different control measures on the spread of COVID-19. The results indicated that following the strict quarantine rule was very effective, and reducing the effective contact rates and improving the diagnosis rate were crucial in reducing the effective reproduction number, and taking control measures as soon as possible can effectively contain a larger outbreak of COVID-19. But a bigger challenge for us to contain the spread of COVID-19 was the transmission from the asymptomatic carriers, which required to raising the public awareness of self-protection and keeping a good physical protection.


2020 ◽  
Vol 9 (5) ◽  
pp. 1297 ◽  
Author(s):  
Robin N. Thompson ◽  
Francesca A. Lovell-Read ◽  
Uri Obolski

Interventions targeting symptomatic hosts and their contacts were successful in bringing the 2003 SARS pandemic under control. In contrast, the COVID-19 pandemic has been harder to contain, partly because of its wide spectrum of symptoms in infectious hosts. Current evidence suggests that individuals can transmit the novel coronavirus while displaying few symptoms. Here, we show that the proportion of infections arising from hosts with few symptoms at the start of an outbreak can, in combination with the basic reproduction number, indicate whether or not interventions targeting symptomatic hosts are likely to be effective. However, as an outbreak continues, the proportion of infections arising from hosts with few symptoms changes in response to control measures. A high proportion of infections from hosts with few symptoms after the initial stages of an outbreak is only problematic if the rate of new infections remains high. Otherwise, it can simply indicate that symptomatic transmissions are being prevented successfully. This should be considered when interpreting estimates of the extent of transmission from hosts with few COVID-19 symptoms.


2020 ◽  
Author(s):  
Chenjing Shang ◽  
Yang Yang ◽  
Gui-Ying Chen ◽  
Xiao-Dong Shang

Abstract Epidemic forecasting provides an opportunity to predict geographic disease spread and counts when an outbreak occurs and plays a key role in preventing or controlling their adverse impact. However, conventional prediction models based on complex mathematical modeling rely on the estimation of model parameters, which yields unreliable and unsustainable results. Herein, we proposed a simple model for predicting the epidemic transmission dynamics based on nonlinear regression of the epidemic growth rate and iterative methods, which is applicable to the progression of the COVID-19 outbreak under the strict control measures of the Chinese government. Our model yields reliable and accurate results as confirmed by the available data: we predicted that the total number of infections in mainland China would be 91,253, and the maximum number of beds required for hospitalized patients would be 62,794. We inferred that the inflection point (when the growth rate turns from positive to negative) of the epidemic across China would be mid-February, and the end of the epidemic would be in late March. This model is expected to contribute to resourceallocation and planning in the health sector while providing a theoretical basis forgovernments to respond to future global health crises or epidemics.


2021 ◽  
Author(s):  
Idowu Kabir Oluwatobi ◽  
Erinle-Ibrahim L.M

Abstract This paper work was designed to study the effect of treatment on the transmission of pneumonia infection. When studying the transmission dynamics of infectious diseases with an objective of suggesting control measures, it is important to consider the stability of equilibrium points. In this paper, basic reproduction number, effective reproduction number, existences and stability of the equilibrium point were established.Using Lyaponov function we discovered that the disease free equilibrium is unstable. The results are presented in graphs and it is discovered that the spread of the infection will be greatly affected by the rate of treatment and natural immunity.


Sign in / Sign up

Export Citation Format

Share Document