scholarly journals Genome-wide alternative splicing profiling in the fungal plant pathogen Sclerotinia sclerotiorum during the colonization of diverse host families

2020 ◽  
Author(s):  
Heba M. M. Ibrahim ◽  
Stefan Kusch ◽  
Marie Didelon ◽  
Sylvain Raffaele

AbstractSclerotinia sclerotiorum is a notorious generalist plant pathogen that threatens more than 600 host plants including wild and cultivated species. The molecular bases underlying the broad compatibility of S. sclerotiorum with its hosts is not fully elucidated. In contrast to higher plants and animals, alternative splicing (AS) is not well studied in plant pathogenic fungi. AS is a common regulated cellular process that increases cell protein and RNA diversity. In this study, we annotated spliceosome genes in the genome of S. sclerotiorum and characterized their expression in vitro and during the colonization of six host species. Several spliceosome genes were differentially expressed in planta, suggesting that AS was altered during infection. Using stringent parameters, we identified 1,487 S. sclerotiorum genes differentially expressed in planta and exhibiting alternative transcripts. The most common AS events during the colonization of all plants were retained introns and alternative 3′ receiver site. We identified S. sclerotiorum genes expressed in planta for which (i) the relative accumulation of alternative transcripts varies according to the host being colonized and (ii) alternative transcripts harbor distinct protein domains. This notably included 42 genes encoding predicted secreted proteins showing high confidence AS events. This study indicates that AS events are taking place in the plant pathogenic fungus S. sclerotiorum during the colonization of host plants and could generate functional diversity in the repertoire of proteins secreted by S. sclerotiorum during infection.

2021 ◽  
Author(s):  
Virginia Mwape ◽  
Fredrick Mobegi ◽  
Roshan Regmi ◽  
Toby Newman ◽  
Lars Kamphuis ◽  
...  

Abstract Background: Sclerotinia sclerotiorum, the cause of Sclerotinia stem rot (SSR), is a host generalist necrotrophic fungus that can cause major yield losses in chickpea (Cicer arietinum) production. This study used RNA sequencing to conduct a timecourse transcriptional analysis of S. sclerotiorum gene expression during chickpea infection. The study explored S. sclerotiorum pathogenicity and developmental factors employed during chickpea infection. Results: During infection of moderately resistant and highly susceptible chickpea lines, 9,491 and 10,487 S. sclerotiorum genes, respectively, were significantly differentially expressed relative to in vitro. Analysis of the upregulated genes revealed enrichment of Gene Ontology biological processes, such as oxidation-reduction process, metabolic process, carbohydrate metabolic process, response to stimulus, and signal transduction. Several gene functional categories were upregulated in planta, including carbohydrate-active enzymes, secondary metabolite biosynthesis clusters, transcription factors and candidate secreted effectors. Differences in S. sclerotiorum genes expressed on varieties with different levels of susceptibility were also observed. Conclusion: These findings provide a framework for a better understanding of S. sclerotiorum interactions with hosts of varying susceptibility levels. Here, we report for the first time on the S. sclerotiorum transcriptome during chickpea infection, which could be important for further studies on this pathogen's molecular biology.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jefferson Allan ◽  
Roshan Regmi ◽  
Matthew Denton-Giles ◽  
Lars G. Kamphuis ◽  
Mark C. Derbyshire

AbstractSclerotinia sclerotiorum is a necrotrophic fungal pathogen that infects upwards of 400 plant species, including several economically important crops. The molecular processes that underpin broad host range necrotrophy are not fully understood. This study used RNA sequencing to assess whether S. sclerotiorum genes are differentially expressed in response to infection of the two different host crops canola (Brassica napus) and lupin (Lupinus angustifolius). A total of 10,864 of the 11,130 genes in the S. sclerotiorum genome were expressed. Of these, 628 were upregulated in planta relative to in vitro on at least one host, suggesting involvement in the broader infection process. Among these genes were predicted carbohydrate-active enzymes (CAZYmes) and secondary metabolites. A considerably smaller group of 53 genes were differentially expressed between the two plant hosts. Of these host-specific genes, only six were either CAZymes, secondary metabolites or putative effectors. The remaining genes represented a diverse range of functional categories, including several associated with the metabolism and efflux of xenobiotic compounds, such as cytochrome P450s, metal-beta-lactamases, tannases and major facilitator superfamily transporters. These results suggest that S. sclerotiorum may regulate the expression of detoxification-related genes in response to phytotoxins produced by the different host species. To date, this is the first comparative whole transcriptome analysis of S. sclerotiorum during infection of different hosts.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Virginia W. Mwape ◽  
Fredrick M. Mobegi ◽  
Roshan Regmi ◽  
Toby E. Newman ◽  
Lars G. Kamphuis ◽  
...  

Abstract Background Sclerotinia sclerotiorum, the cause of Sclerotinia stem rot (SSR), is a host generalist necrotrophic fungus that can cause major yield losses in chickpea (Cicer arietinum) production. This study used RNA sequencing to conduct a time course transcriptional analysis of S. sclerotiorum gene expression during chickpea infection. It explores pathogenicity and developmental factors employed by S. sclerotiorum during interaction with chickpea. Results During infection of moderately resistant (PBA HatTrick) and highly susceptible chickpea (Kyabra) lines, 9491 and 10,487 S. sclerotiorum genes, respectively, were significantly differentially expressed relative to in vitro. Analysis of the upregulated genes revealed enrichment of Gene Ontology biological processes, such as oxidation-reduction process, metabolic process, carbohydrate metabolic process, response to stimulus, and signal transduction. Several gene functional categories were upregulated in planta, including carbohydrate-active enzymes, secondary metabolite biosynthesis clusters, transcription factors and candidate secreted effectors. Differences in expression of four S. sclerotiorum genes on varieties with different levels of susceptibility were also observed. Conclusion These findings provide a framework for a better understanding of S. sclerotiorum interactions with hosts of varying susceptibility levels. Here, we report for the first time on the S. sclerotiorum transcriptome during chickpea infection, which could be important for further studies on this pathogen’s molecular biology.


2001 ◽  
Vol 183 (12) ◽  
pp. 3597-3605 ◽  
Author(s):  
Julie Tans-Kersten ◽  
Huayu Huang ◽  
Caitilyn Allen

ABSTRACT Ralstonia solanacearum, a widely distributed and economically important plant pathogen, invades the roots of diverse plant hosts from the soil and aggressively colonizes the xylem vessels, causing a lethal wilting known as bacterial wilt disease. By examining bacteria from the xylem vessels of infected plants, we found thatR. solanacearum is essentially nonmotile in planta, although it can be highly motile in culture. To determine the role of pathogen motility in this disease, we cloned, characterized, and mutated two genes in the R. solanacearum flagellar biosynthetic pathway. The genes for flagellin, the subunit of the flagellar filament (fliC), and for the flagellar motor switch protein (fliM) were isolated based on their resemblance to these proteins in other bacteria. As is typical for flagellins, the predicted FliC protein had well-conserved N- and C-terminal regions, separated by a divergent central domain. The predicted R. solanacearum FliM closely resembled motor switch proteins from other proteobacteria. Chromosomal mutants lackingfliC or fliM were created by replacing the genes with marked interrupted constructs. Since fliM is embedded in the fliLMNOPQR operon, the aphAcassette was used to make a nonpolar fliM mutation. Both mutants were completely nonmotile on soft agar plates, in minimal broth, and in tomato plants. The fliC mutant lacked flagella altogether; moreover, sheared-cell protein preparations from the fliC mutant lacked a 30-kDa band corresponding to flagellin. The fliM mutant was usually aflagellate, but about 10% of cells had abnormal truncated flagella. In a biologically representative soil-soak inoculation virulence assay, both nonmotile mutants were significantly reduced in the ability to cause disease on tomato plants. However, the fliC mutant had wild-type virulence when it was inoculated directly onto cut tomato petioles, an inoculation method that did not require bacteria to enter the intact host from the soil. These results suggest that swimming motility makes its most important contribution to bacterial wilt virulence in the early stages of host plant invasion and colonization.


2003 ◽  
Vol 16 (9) ◽  
pp. 808-816 ◽  
Author(s):  
Carole Santi ◽  
Uritza von Groll ◽  
Ana Ribeiro ◽  
Maurizio Chiurazzi ◽  
Florence Auguy ◽  
...  

Two types of root nodule symbioses are known for higher plants, legume and actinorhizal symbioses. In legume symbioses, bacterial signal factors induce the expression of ENOD40 genes. We isolated an ENOD40 promoter from an actinorhizal plant, Casuarina glauca, and compared its expression pattern in a legume (Lotus japonicus) and an actinorhizal plant (Allocasuarina verticillata) with that of an ENOD40 promoter from the legume soybean (GmENOD402). In the actinorhizal Allocasuarina sp., CgENOD40-GUS and GmENOD40-2-GUS showed similar expression patterns in both vegetative and symbiotic development, and neither promoter was active during nodule induction. The nonsymbiotic expression pattern of CgENOD40-GUS in the legume genus Lotus resembled the nonsymbiotic expression patterns of legume ENOD40 genes however, in contrast to GmENOD40-2-GUS, CgENOD40-GUS was not active during nodule induction. The fact that only legume, not actinorhizal, ENOD40 genes are induced during legume nodule induction can be linked to the phloem unloading mechanisms established in the zones of nodule induction in the roots of both types of host plants.


Biology ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 46 ◽  
Author(s):  
Lola Esland ◽  
Marco Larrea-Alvarez ◽  
Saul Purton

Chlamydomonas reinhardtii is a model alga of increasing interest as a cell factory for the production of valuable compounds, including therapeutic proteins and bioactive metabolites. Expression of foreign genes in the chloroplast is particularly advantageous as: (i) accumulation of product in this sub-cellular compartment minimises potential toxicity to the rest of the cell; (ii) genes can integrate at specific loci of the chloroplast genome (plastome) by homologous recombination; (iii) the high ploidy of the plastome and the high-level expression of chloroplast genes can be exploited to achieve levels of recombinant protein as high as 5% total cell protein; (iv) the lack of any gene silencing mechanisms in the chloroplast ensures stable expression of transgenes. However, the generation of C. reinhardtii chloroplast transformants requires efficient methods of selection, and ideally methods for subsequent marker removal. Additionally, the use of reporter genes is critical to achieving a comprehensive understanding of gene expression, thereby informing experimental design for recombinant applications. This review discusses currently available selection and reporter systems for chloroplast engineering in C. reinhardtii, as well as those used for chloroplast engineering in higher plants and other microalgae, and looks to the future in terms of possible new markers and reporters that will further advance the C. reinhardtii chloroplast as an expression platform.


2018 ◽  
Vol 116 (2) ◽  
pp. 490-495 ◽  
Author(s):  
Hong-Xing Xu ◽  
Li-Xin Qian ◽  
Xing-Wei Wang ◽  
Ruo-Xuan Shao ◽  
Yue Hong ◽  
...  

Phloem-feeding insects feed on plant phloem using their stylets. While ingesting phloem sap, these insects secrete saliva to circumvent plant defenses. Previous studies have shown that, to facilitate their feeding, many phloem-feeding insects can elicit the salicylic acid- (SA-) signaling pathway and thus suppress effective jasmonic acid defenses. However, the molecular basis for the regulation of the plant's defense by phloem-feeding insects remains largely unknown. Here, we show that Bt56, a whitefly-secreted low molecular weight salivary protein, is highly expressed in the whitefly primary salivary gland and is delivered into host plants during feeding. Overexpression of the Bt56 gene in planta promotes susceptibility of tobacco to the whitefly and elicits the SA-signaling pathway. In contrast, silencing the whitefly Bt56 gene significantly decreases whitefly performance on host plants and interrupts whitefly phloem feeding with whiteflies losing the ability to activate the SA pathway. Protein-protein interaction assays show that the Bt56 protein directly interacts with a tobacco KNOTTED 1-like homeobox transcription factor that decreases whitefly performance and suppresses whitefly-induced SA accumulation. The Bt56 orthologous genes are highly conserved but differentially expressed in different species of whiteflies. In conclusion, Bt56 is a key salivary effector that promotes whitefly performance by eliciting salicylic acid-signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document