scholarly journals Analysis of Differentially Expressed Sclerotinia Sclerotiorum Genes During the Interaction With Moderately Resistant and Highly Susceptible Chickpea Lines

Author(s):  
Virginia Mwape ◽  
Fredrick Mobegi ◽  
Roshan Regmi ◽  
Toby Newman ◽  
Lars Kamphuis ◽  
...  

Abstract Background: Sclerotinia sclerotiorum, the cause of Sclerotinia stem rot (SSR), is a host generalist necrotrophic fungus that can cause major yield losses in chickpea (Cicer arietinum) production. This study used RNA sequencing to conduct a timecourse transcriptional analysis of S. sclerotiorum gene expression during chickpea infection. The study explored S. sclerotiorum pathogenicity and developmental factors employed during chickpea infection. Results: During infection of moderately resistant and highly susceptible chickpea lines, 9,491 and 10,487 S. sclerotiorum genes, respectively, were significantly differentially expressed relative to in vitro. Analysis of the upregulated genes revealed enrichment of Gene Ontology biological processes, such as oxidation-reduction process, metabolic process, carbohydrate metabolic process, response to stimulus, and signal transduction. Several gene functional categories were upregulated in planta, including carbohydrate-active enzymes, secondary metabolite biosynthesis clusters, transcription factors and candidate secreted effectors. Differences in S. sclerotiorum genes expressed on varieties with different levels of susceptibility were also observed. Conclusion: These findings provide a framework for a better understanding of S. sclerotiorum interactions with hosts of varying susceptibility levels. Here, we report for the first time on the S. sclerotiorum transcriptome during chickpea infection, which could be important for further studies on this pathogen's molecular biology.

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Virginia W. Mwape ◽  
Fredrick M. Mobegi ◽  
Roshan Regmi ◽  
Toby E. Newman ◽  
Lars G. Kamphuis ◽  
...  

Abstract Background Sclerotinia sclerotiorum, the cause of Sclerotinia stem rot (SSR), is a host generalist necrotrophic fungus that can cause major yield losses in chickpea (Cicer arietinum) production. This study used RNA sequencing to conduct a time course transcriptional analysis of S. sclerotiorum gene expression during chickpea infection. It explores pathogenicity and developmental factors employed by S. sclerotiorum during interaction with chickpea. Results During infection of moderately resistant (PBA HatTrick) and highly susceptible chickpea (Kyabra) lines, 9491 and 10,487 S. sclerotiorum genes, respectively, were significantly differentially expressed relative to in vitro. Analysis of the upregulated genes revealed enrichment of Gene Ontology biological processes, such as oxidation-reduction process, metabolic process, carbohydrate metabolic process, response to stimulus, and signal transduction. Several gene functional categories were upregulated in planta, including carbohydrate-active enzymes, secondary metabolite biosynthesis clusters, transcription factors and candidate secreted effectors. Differences in expression of four S. sclerotiorum genes on varieties with different levels of susceptibility were also observed. Conclusion These findings provide a framework for a better understanding of S. sclerotiorum interactions with hosts of varying susceptibility levels. Here, we report for the first time on the S. sclerotiorum transcriptome during chickpea infection, which could be important for further studies on this pathogen’s molecular biology.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jefferson Allan ◽  
Roshan Regmi ◽  
Matthew Denton-Giles ◽  
Lars G. Kamphuis ◽  
Mark C. Derbyshire

AbstractSclerotinia sclerotiorum is a necrotrophic fungal pathogen that infects upwards of 400 plant species, including several economically important crops. The molecular processes that underpin broad host range necrotrophy are not fully understood. This study used RNA sequencing to assess whether S. sclerotiorum genes are differentially expressed in response to infection of the two different host crops canola (Brassica napus) and lupin (Lupinus angustifolius). A total of 10,864 of the 11,130 genes in the S. sclerotiorum genome were expressed. Of these, 628 were upregulated in planta relative to in vitro on at least one host, suggesting involvement in the broader infection process. Among these genes were predicted carbohydrate-active enzymes (CAZYmes) and secondary metabolites. A considerably smaller group of 53 genes were differentially expressed between the two plant hosts. Of these host-specific genes, only six were either CAZymes, secondary metabolites or putative effectors. The remaining genes represented a diverse range of functional categories, including several associated with the metabolism and efflux of xenobiotic compounds, such as cytochrome P450s, metal-beta-lactamases, tannases and major facilitator superfamily transporters. These results suggest that S. sclerotiorum may regulate the expression of detoxification-related genes in response to phytotoxins produced by the different host species. To date, this is the first comparative whole transcriptome analysis of S. sclerotiorum during infection of different hosts.


Plant Disease ◽  
2017 ◽  
Vol 101 (2) ◽  
pp. 344-353 ◽  
Author(s):  
J. F. Willbur ◽  
S. Ding ◽  
M. E. Marks ◽  
H. Lucas ◽  
C. R. Grau ◽  
...  

Sclerotinia sclerotiorum population variability directly affects Sclerotinia stem rot (SSR) resistance breeding programs. In the north-central United States, however, soybean germplasm selection has often involved only a single isolate. Forty-four S. sclerotiorum isolates from Illinois, Michigan, Minnesota, Nebraska, Wisconsin, Poland, and across 11 different host species were evaluated for variation in isolate in vitro growth, in vitro oxalate production, and in planta aggressiveness on the susceptible soybean ‘Williams 82’. Significant differences (P < 0.0001) were detected in isolate in planta aggressiveness, in vitro growth, and in vitro oxalate production. Furthermore, diverse isolate characteristics were observed within all hosts and locations of collection. Aggressiveness was not correlated to colony growth and was only weakly correlated (r = 0.26, P < 0.0001) to isolate oxalate production. In addition, the host or location of collection did not explain isolate aggressiveness. Isolate oxalic acid production, however, may be partially explained by the host (P < 0.05) and location (P < 0.01) of collection. Using a representative subset of nine S. sclerotiorum isolates and soybean genotypes exhibiting susceptible or resistant responses (determined using a single isolate), a significant interaction (P = 0.04) was detected between isolates and genotypes when SSR severity was evaluated. Our findings suggest that screening of S. sclerotiorum-resistant soybean germplasm should be performed with multiple isolates to account for the overall diversity of S. sclerotiorum isolates found throughout the soybean-growing regions of the United States.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Jie Cheng ◽  
Xun Jin ◽  
Jie Shen ◽  
Yanyun Mu ◽  
Qian Li ◽  
...  

Background. In vitro fertilization and embryo transfer (IVF-ET) technology has been widely used in the therapy of refractory infertility. Previous studies showed that acupuncture can effectively increase the clinical pregnancy rate of IVF-ET. However, the molecular mechanism is unknown. Materials and Methods. In this study, we performed whole transcriptome sequencing for endometrial samples from infertile women who underwent acupuncture and moxibustion therapy or not. Differentially expressed noncoding RNAs (ncRNAs) and mRNAs were identified and their functions were predicted. Besides, a competitive endogenous RNA network was constructed to further interpret the molecular mechanism of acupuncture and moxibustion therapy on infecund patients. In addition, real-time PCR was applied to validate the RNA-seq results. Results. We identified 317 differentially expressed mRNAs and 82 ncRNAs in acupuncture and moxibustion therapy group compared with control group. Functional enrichment analysis suggested that these genes were significantly enriched in GO-BP terms associated with cellular transport, such as ATP hydrolysis coupled proton transport, vacuolar acidification, transferrin transport, and proton transport and metabolic process, including small molecule metabolic process and metabolic process. Pathway enrichment analysis enriched 11 terms, including oxidative phosphorylation, synaptic vesicle cycle, mineral absorption, and metabolic pathways. Four of five selected differentially expressed genes were validated by real-time PCR. Conclusion. Our results suggested that acupuncture and moxibustion therapy might increase the pregnancy rate of patients undergoing IVF-ET by the regulation of ncRNAs.


2015 ◽  
Vol 55 (4) ◽  
pp. 354-361 ◽  
Author(s):  
Alireza Dalili ◽  
Saeed Bakhtiari ◽  
Hossein Barari ◽  
Majid Aldaghi

Abstract Sclerotinia sclerotiorum (Lib.) de Bary, the causal agent of Sclerotinia stem rot, is one of the most important pathogens of Brassica napus L. in northern Iran. In this study, 13 mycelial compatibility groups (MCGs) of the fungus were identified among 31 isolates sampled from four regions of Mazandaran province, Iran. Effective fungicides are useful in the integrated management of the disease. So, the effect of tebuconazole, propiconazole, cyproconazole, and Rovral-TS at five doses (0.0001, 0.001, 0.01, 0.1, and 1 ppm) was studied on the growth inhibition of S. sclerotiorum as in vitro tests. Maximum inhibition (100%) of S. sclerotiorum mycelial growth was obtained by the highest dose (1 ppm) of all tested fungicides, as well as by the doses of 0.1 and 0.01 ppm of propiconazole, cyproconazole, and tebuconazole. In this investigation, the reaction of S. sclerotiorum isolates belonging to different MCGs was evaluated against tebuconazole, propiconazole, cyproconazole, and Rovral-TS at their EC50 ranges. The results revealed that there was high variation of S. sclerotiorum MCGs against different fungicides. The inhibition percentage varied between 4.29% and 71.72%.


Plant Disease ◽  
2015 ◽  
Vol 99 (7) ◽  
pp. 969-975 ◽  
Author(s):  
Congying Xu ◽  
Xiaoyu Liang ◽  
Yiping Hou ◽  
Mingguo Zhou

We determined the effects and efficacy of benzothiostrobin, a new strobilurin-derived fungicide, against the plant-pathogenic fungus Sclerotinia sclerotiorum (the causal agent of Sclerotinia stem rot). Mycelial growth and sclerotial germination in vitro were strongly inhibited by benzothiostrobin in the presence of salicylhydroxamic acid. On detached rapeseed leaves, benzothiostrobin at 40 μg/ml reduced lesion development by 87%. No cross-resistance was detected between benzothiostrobin and carbendazim, iprodione, fludioxonil, or boscalid. A formulated mixture of benzothiostrobin and fluazinam at 1:1 had synergistic activity against S. sclerotiorum in vitro. In field trials, benzothiostrobin alone or formulated with fluazinam at 1:1 (150 g a.i. ha−1) was significantly (P < 0.05) superior to iprodione in controlling Sclerotinia stem rot of rapeseed. These results suggest that benzothiostrobin has substantial potential for the control of Sclerotinia stem rot.


2020 ◽  
Author(s):  
Heba M. M. Ibrahim ◽  
Stefan Kusch ◽  
Marie Didelon ◽  
Sylvain Raffaele

AbstractSclerotinia sclerotiorum is a notorious generalist plant pathogen that threatens more than 600 host plants including wild and cultivated species. The molecular bases underlying the broad compatibility of S. sclerotiorum with its hosts is not fully elucidated. In contrast to higher plants and animals, alternative splicing (AS) is not well studied in plant pathogenic fungi. AS is a common regulated cellular process that increases cell protein and RNA diversity. In this study, we annotated spliceosome genes in the genome of S. sclerotiorum and characterized their expression in vitro and during the colonization of six host species. Several spliceosome genes were differentially expressed in planta, suggesting that AS was altered during infection. Using stringent parameters, we identified 1,487 S. sclerotiorum genes differentially expressed in planta and exhibiting alternative transcripts. The most common AS events during the colonization of all plants were retained introns and alternative 3′ receiver site. We identified S. sclerotiorum genes expressed in planta for which (i) the relative accumulation of alternative transcripts varies according to the host being colonized and (ii) alternative transcripts harbor distinct protein domains. This notably included 42 genes encoding predicted secreted proteins showing high confidence AS events. This study indicates that AS events are taking place in the plant pathogenic fungus S. sclerotiorum during the colonization of host plants and could generate functional diversity in the repertoire of proteins secreted by S. sclerotiorum during infection.


Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1758
Author(s):  
Nazanin Zamani-Noor

Sclerotinia stem rot (SSR), caused by Sclerotinia sclerotiorum, is a devastating disease of oilseed rape that may cause significant yield losses if not controlled by cultural management strategies and fungicide applications. Studies were conducted to evaluate the efficacy of different group of fungicides as well as a biopesticide, including azoxystrobin, boscalid, fludioxonil, prothioconazole, tebuconazole, azoxystrobin/tebuconazole, boscalid/pyraclostrobin, prothioconazole/fluopyram and Bacillus amyloliquefaciens, on baseline sensitivity of S. sclerotiorum isolates under in-vitro conditions as well as control of SSR in the field. Artificial inoculation and mist irrigation prompt to reproducible SSR infection in oilseed rape cultivation. All compounds significantly reduced 36.7% to 86.9% SSR severity and increased 55.2% to 98.7% yield, 1.5% to 7.0% thousand grain-weight, 1.5% to 5.9% oil and 0.1% to 1.3% protein content. Fludioxonil, boscalid/pyraclostrobin and fluopyram/prothioconazole achieved strongest fungicidal activity against SSR. The biopesticide provided 36% of disease control. Under in vitro conditions, B. amyloliquefaciens not only strongly inhibited mycelial growth but also the formation of sclerotia in all concentrations. Boscalid and fludioxonil exhibited the highest level of fungicidal activity against S. sclerotiorum, with mean EC50 values of 1.23 and 1.60 μg a.s. mL−1. The highest variability of EC50 values between isolates was observed towards prothioconazole and azoxystrobin.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Jian Wu ◽  
Qing Zhao ◽  
Qingyong Yang ◽  
Han Liu ◽  
Qingyuan Li ◽  
...  

Abstract Sclerotinia stem rot caused by Sclerotinia sclerotiorum is one of the most devastating diseases in many important crops including Brassica napus worldwide. Quantitative resistance is the only source for genetic improvement of Sclerotinia-resistance in B. napus, but the molecular basis for such a resistance is largely unknown. Here, we performed dynamic transcriptomic analyses to understand the differential defense response to S. sclerotiorum in a resistant line (R-line) and a susceptible line (S-line) of B. napus at 24, 48 and 96 h post-inoculation. Both the numbers of and fold changes in differentially expressed genes in the R-line were larger than those in the S-line. We identified 9001 relative differentially expressed genes in the R-line compared with the S-line. The differences between susceptibility and resistance were associated with the magnitude of expression changes in a set of genes involved in pathogen recognition, MAPK signaling cascade, WRKY transcription regulation, jasmonic acid/ethylene signaling pathways and biosynthesis of defense-related protein and indolic glucosinolate. The results were supported by quantitation of defense-related enzyme activity and glucosinolate contents. Our results provide insights into the complex molecular mechanism of the defense response to S. sclerotiorum in B. napus and for development of effective strategies in Sclerotinia-resistance breeding.


Plant Disease ◽  
2009 ◽  
Vol 93 (1) ◽  
pp. 36-42 ◽  
Author(s):  
Hui-Xia Ma ◽  
Xi-Jie Feng ◽  
Yu Chen ◽  
Chang-Jun Chen ◽  
Ming-Guo Zhou

Sclerotinia stem rot, caused by Sclerotinia sclerotiorum, is the main fungal disease of oilseed rape (Brassica napus) in China. Numerous fungicide applications are required for control. Dimethachlon, one of the dicarboximide fungicides, has been the major fungicide for disease control after benzimidazole resistance became widespread. Fungal populations were collected throughout Jiangsu Province between 2006 and 2007 in order to determine their sensitivity to dimethachlon. A total of 1,066 single-sclerotium isolates of S. sclerotiorum were collected, and most of the isolates were considered sensitive to dimethachlon. Five isolates collected in Yancheng and Changzhou showed normal growth at 5 μg/ml dimethachlon with the resistance factor ≈10 (resistance factor was estimated as ratios between the EC50 values of resistant isolates and the average EC50 values of sensitive ones) compared to the sensitive isolates (EC50 is the concentration of fungicide causing 50% reduction in growth). Through in vitro selection for resistance to the fungicide, 25 dimethachlon-resistant mutants were derived from 10 wild-type isolates of S. sclerotiorum. The resistance factors for the isolates ranged from 198 to 484, and the isolates were considered highly resistant to dimethachlon. Therefore, at least two different mechanisms of resistance seem to be involved: one that may provide a moderate resistance (insensitivity) and a second that may give a high resistance level under laboratory conditions. There was positive cross-resistance between dimethachlon and other dicarboximide fungicides, such as iprodione and procymidone, in these S. sclerotiorum isolates. The field dimethachlon-insensitive and the laboratory-induced dimethachlon-resistant isolates appeared to have mycelial growth, sclerotial production, and pathogenicity comparable to their wild-type parental isolates. Also, results of osmotic tests showed that there were no significant difference in mycelial radial growth between the field dimethachlon-sensitive and field dimethachlon-insensitive isolates on potato dextrose agar plates amended with 2, 4, 6, or 8% (wt/vol) NaCl, but the laboratory-induced dimethachlon-resistant isolates grew significantly more slowly than their wild-type sensitive parents under all concentrations of NaCl. Because these studies yielded a high frequency of laboratory resistance in S. sclerotiorum, together with the occurrence of field insensitivity, appropriate precautions against resistance development in natural populations should be taken.


Sign in / Sign up

Export Citation Format

Share Document